home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

4 rows where state = "closed" and user = 11950875 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: closed_at, created_at (date), updated_at (date), closed_at (date)

type 2

  • issue 3
  • pull 1

state 1

  • closed · 4 ✖

repo 1

  • xarray 4
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
143107776 MDU6SXNzdWUxNDMxMDc3NzY= 801 dictionaries in labeled indexing with letter values nedlrichards 11950875 closed 0     2 2016-03-23T23:44:02Z 2016-03-24T16:05:23Z 2016-03-24T16:05:11Z CONTRIBUTOR      

An exception is raised when a letter is used in a dictionary as a labelled index. I believe this use of letter values is acceptable according to #291.

The error is:

ValueError: invalid literal for int() with base 10: 'b'

The work around is simple at least, the .loc keyword works as expected with dictionary labelled indexing.

``` test = np.random.randn(3, 3) test_xr = xr.DataArray(test, coords=[[1, 2, 3], ['a', 'b', 'c']], dims=['inter', 'alpha']) test_xr.loc[dict(inter=1)] test_xr[dict(inter=1)] test_xr.loc[dict(alpha='b')]

Throws a ValueError exception

test_xr[dict(alpha='b')] ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/801/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
132535802 MDU6SXNzdWUxMzI1MzU4MDI= 753 creating DataArray from list of complex DataArray nedlrichards 11950875 closed 0     3 2016-02-09T21:13:50Z 2016-02-11T16:11:52Z 2016-02-11T16:11:52Z CONTRIBUTOR      

The DataArray constructor fails with a TypeError in the following case:

c1 = xr.DataArray(np.array((1, 2), dtype=np.complex)) c2 = xr.DataArray(np.array((3, 4), dtype=np.complex)) test = xr.DataArray([c1, c2])

The constructor works fine if c1 and c2 are np.arrays:

c1 = np.array((1, 2), dtype=np.complex) c2 = np.array((3, 4), dtype=np.complex) test = xr.DataArray([c1,c2])

and constructing the array with concatenation also works:

c1 = xr.DataArray(np.array((1, 2), dtype=np.complex)) c2 = xr.DataArray(np.array((3, 4), dtype=np.complex)) test = xr.concat([c1, c2], 'new')

Any thoughts on how to fix this?

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/753/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
130767608 MDExOlB1bGxSZXF1ZXN0NTgwMjY4NjY= 743 BUG: reindexing an array with complex values should keep dtype=complex nedlrichards 11950875 closed 0     6 2016-02-02T18:11:48Z 2016-02-04T23:13:09Z 2016-02-04T23:12:37Z CONTRIBUTOR   0 pydata/xarray/pulls/743

Fixes #738

I have added a simple behaviour for complex numbers in _maybe_promote. This fix means that _maybe_promote does indeed return (dtype, np.nan + 0j) for complex dtypes, and the complex -> object conversion shown in #738 does not occur.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/743/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
130504978 MDU6SXNzdWUxMzA1MDQ5Nzg= 738 reindex_like with tolerance changes the type of returned DataArray nedlrichards 11950875 closed 0     1 2016-02-01T22:30:36Z 2016-02-04T23:12:37Z 2016-02-04T23:12:37Z CONTRIBUTOR      

I am really excited about all of the new changes to xarray! reindexing with tolerance has great potential to clean up some sort of nasty stuff that I use a lot but have tucked away into a corner of my code. I am not sure I am 100% comfortable with it at the moment, however, because it seems to be changing the types of my data in unexpected ways.

Bei:

``` test = xr.DataArray([1,2,3], coords=[[0.1, 0.2, 0.3]]) test_i = xr.DataArray([5,6,7,8], coords=[[0.21, 0.31, 0.41, 0.51]])

test.dtype test.reindex_like(test_i, method='pad', tolerance=0.2).dtype ```

the reindexed output has changed from int64 to float64!

Even more concerning is the complex example:

``` test = xr.DataArray(np.array([1,2,3], dtype=np.complex), coords=[[0.1, 0.2, 0.3]])

test.dtype test.reindex_like(test_i, method='pad', tolerance=0.2).dtype ```

Conversion from complex to object? Oh no.

Hope this isn't anything too big, let me know if I can help. Thank

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/738/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 1037.313ms · About: xarray-datasette