home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

4 rows where state = "closed" and user = 1177508 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 1

  • issue 4

state 1

  • closed · 4 ✖

repo 1

  • xarray 4
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
102177256 MDU6SXNzdWUxMDIxNzcyNTY= 542 issue with xray.open_mfdataset and binary operations razcore-rad 1177508 closed 0     5 2015-08-20T16:28:12Z 2015-09-03T08:41:00Z 2015-09-01T22:05:02Z NONE      

example:

python with xray.open_mfdataset(...) as ds: a = ds['x'] * ds['y']

gives:

NotImplementedError: Dask.array operations only work on dask arrays, not numpy arrays. If I do ds.load() first then all is good... I guess this is an xray issue, not dask.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/542/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
91184107 MDU6SXNzdWU5MTE4NDEwNw== 444 segmentation fault with `open_mfdataset` razcore-rad 1177508 closed 0     26 2015-06-26T07:57:58Z 2015-07-16T21:40:22Z 2015-07-16T21:40:22Z NONE      

This is super strange. Does anyone have any idea why a segmentation fault might be happening here?

``` Python 3.4.3 (default, Jun 26 2015, 00:02:21) [GCC 4.3.4 [gcc-4_3-branch revision 152973]] on linux Type "help", "copyright", "credits" or "license" for more information.

import xray xray.open_mfdataset('2*.nc', concat_dim='time') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/ichec/home/users/razvan/.local/lib/python3.4/site-packages/xray/backends/api.py", line 205, in open_mfdataset Segmentation fault (core dumped) ```

I stay it's strange because I ended up tracking down the bug to xray.core.ops.array_equiv. I have no idea what's going on, but by mistake I found out that if I introduce isnull(arr1 & arr2) just before the return statement then I don't get the error any more... So my xray.core.ops.array_equiv is now:

def array_equiv(arr1, arr2): """Like np.array_equal, but also allows values to be NaN in both arrays """ arr1, arr2 = as_like_arrays(arr1, arr2) if arr1.shape != arr2.shape: return False # segmentation fault if we don't call this here... isnull(arr1 & arr2) return bool(((arr1 == arr2) | (isnull(arr1) & isnull(arr2))).all())

Thanks...

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/444/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
94030797 MDU6SXNzdWU5NDAzMDc5Nw== 458 groupby / apply and dask (`open_mfdataset`) razcore-rad 1177508 closed 0     2 2015-07-09T12:10:04Z 2015-07-15T00:02:40Z 2015-07-15T00:02:34Z NONE      

It seems that, when working with open_mfdataset, things are not consistent. Trying the following:

python import numpy as np import xray a = xray.open_mfdataset('*.nc', concat_dim='time', preprocess=lambda x: x.assign_coords(agl=('mean_height_agl', range(x.dims['mean_height_agl']))).swap_dims({'mean_height_agl': 'agl'}).squeeze('time')) a.groupby('time').apply(np.sum)

gives an error with a huge traceback that ends with:

``` python IndexError: Exception in remote process

tuple index out of range

Traceback: File "/home/razvan/.local/lib/python3.4/site-packages/dask/async.py", line 260, in execute_task result = _execute_task(task, data) File "/home/razvan/.local/lib/python3.4/site-packages/dask/async.py", line 243, in _execute_task return func(*args2) File "/home/razvan/.local/lib/python3.4/site-packages/toolz/functoolz.py", line 378, in call ret = fns0 File "/home/razvan/.local/lib/python3.4/site-packages/dask/array/core.py", line 377, in _concatenate2 ```

but if I do:

python a.load() a.groupby('time').apply(np.sum)

there's no error. The files I'm using for this are at this dropbox place.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/458/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
91109966 MDU6SXNzdWU5MTEwOTk2Ng== 443 multiple files - variable X not equal across datasets razcore-rad 1177508 closed 0     9 2015-06-26T00:18:21Z 2015-06-29T18:06:54Z 2015-06-29T18:06:54Z NONE      

The other day I was playing with xray.open_mfdataset and I noticed you can get this error, when opening multiple files at the same time. I think there is a pretty easy solution to this:

``` python import glob as g from toolz.curried import curry, map, pipe import xray

def get_ds(glob): def _get_ds(file_path): dim = 'mean_height_agl' dim_new = 'agl' with xray.open_dataset(file_path) as _ds: _ds.load() return (_ds.assign_coords(**{dim_new: (dim, range(_ds.coords[dim].size))}) .swap_dims({dim: dim_new}))

return pipe(g.glob(glob),
            sorted,
            map(_get_ds),
            curry(xray.concat)(dim='time'))

```

Of course, this is for a particular variable I was having trouble with, but the idea is to swap dimensions, that is create a dummy dimension with the same length as the troublesome variable and then swap the two. This can be done for any number of troublesome variables. I don't know how feasible this is though. Just thought to share my idea...

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/443/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 23.281ms · About: xarray-datasette