issues
1 row where state = "closed", type = "issue" and user = 8881170 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
445175953 | MDU6SXNzdWU0NDUxNzU5NTM= | 2969 | `where` function mis-broadcasts and alters data type on dataset | bradyrx 8881170 | closed | 0 | 2 | 2019-05-16T21:52:58Z | 2019-05-20T16:30:02Z | 2019-05-20T16:30:02Z | CONTRIBUTOR | Code Sample, a copy-pastable example if possible```python import numpy as np generate datadateVar = np.arange('2005-02', '2005-06', dtype='datetime64[D]') t = len(dateVar) floatVar = np.random.rand(t, 100) indexVar = np.arange(100) intVar = np.random.randint(1, high=10, size=(t, 100)) create datasetA = xr.DataArray(floatVar, dims=['time', 'N']) A.name = 'floatVar' B = xr.DataArray(indexVar, dims=['N']) B.name = 'indexVar' C = xr.DataArray(intVar, dims=['time', 'N']) C.name = 'intVar' D = xr.DataArray(dateVar, dims=['time']) D.name = 'dateVar' ds = xr.merge([A,B,C,D]) print(ds) <xarray.Dataset> Dimensions: (N: 100, time: 120) Dimensions without coordinates: N, time Data variables: floatVar (time, N) float64 0.4223 0.5019 0.8522 ... 0.9338 0.5833 0.09859 indexVar (N) int64 0 1 2 3 4 5 6 7 8 9 10 ... 90 91 92 93 94 95 96 97 98 99 intVar (time, N) int64 9 2 3 6 8 4 8 7 6 4 2 6 ... 3 1 8 3 8 3 5 3 1 6 7 dateVar (time) datetime64[ns] 2005-02-01 2005-02-02 ... 2005-05-31 apply where functionds.where(ds.indexVar > 50, drop=True) <xarray.Dataset> Dimensions: (N: 49, time: 120) Dimensions without coordinates: N, time Data variables: floatVar (time, N) float64 0.3381 0.04735 0.464 ... 0.5571 0.5297 0.8106 indexVar (N) float64 51.0 52.0 53.0 54.0 55.0 ... 95.0 96.0 97.0 98.0 99.0 intVar (time, N) float64 5.0 2.0 9.0 5.0 5.0 1.0 ... 1.0 6.0 5.0 4.0 3.0 dateVar (time, N) datetime64[ns] 2005-02-01 2005-02-01 ... 2005-05-31 ``` Problem descriptionThis is motivated by a use-case of dimensions (Time, nParticle) for a Lagrangian particle simulation. In the above code snippet, I filter by some condition on For variables that contain the same dimension as the one in Further, data-types are changed ( So the two major issues here:
1. Expected Output
Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2969/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);