issues
6 rows where state = "closed", type = "issue" and user = 3698640 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1284056895 | I_kwDOAMm_X85MiSc_ | 6720 | readthedocs failing on main | delgadom 3698640 | closed | 0 | 0 | 2022-06-24T18:26:39Z | 2022-06-25T11:00:50Z | 2022-06-25T11:00:50Z | CONTRIBUTOR | What is your issue?I'm pretty sure my PR https://github.com/pydata/xarray/pull/6542 is the culprit. I never figured out how to get around the build timeout with these docs edits. If you all are on top of this then no worries - feel free to close. Just wanted to point in the right direction so you don't need to go hunting. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6720/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1199122647 | I_kwDOAMm_X85HeSjX | 6466 | drop and other shouldn't be mutually exclusive in DataWithCoords.where | delgadom 3698640 | closed | 0 | 0 | 2022-04-10T17:42:07Z | 2022-04-12T15:33:05Z | 2022-04-12T15:33:05Z | CONTRIBUTOR | Is your feature request related to a problem?
```python In [2]: da = xr.DataArray(np.arange(16).reshape(4, 4), dims=['x', 'y']) In [3]: da
Out[3]:
<xarray.DataArray (x: 4, y: 4)>
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
Dimensions without coordinates: x, y
ValueError Traceback (most recent call last) Input In [5], in <module> ----> 1 da.where(da > 6, -1, drop=True) File ~/miniconda3/envs/rhodium-env/lib/python3.10/site-packages/xarray/core/common.py:1268, in DataWithCoords.where(self, cond, other, drop)
1266 if drop:
1267 if other is not dtypes.NA:
-> 1268 raise ValueError("cannot set ValueError: cannot set Describe the solution you'd likeCurrent implementationThe current behavior is enforced within the block handling the
Proposed fixI just removed the above if statement on a fork, and the example now works! ```python
Describe alternatives you've consideredNo response Additional contextI haven't yet investigated what would happen with chunked, sparse, or other complex arrays, or if it's compatible with trees and other things on the roadmap. It's possible this breaks things I'm not imagining. Currently, I'm definitely open to creating a pull request (and have the simple implementation I've outlined here ready to go). |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6466/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
186895655 | MDU6SXNzdWUxODY4OTU2NTU= | 1075 | Support creating DataSet from streaming object | delgadom 3698640 | closed | 0 | 16 | 2016-11-02T19:19:04Z | 2020-06-01T06:37:08Z | 2018-01-11T23:58:41Z | CONTRIBUTOR | The use case is for netCDF files stored on s3 or other generic cloud storage ```python import requests, xarray as xr fp = 'http://nasanex.s3.amazonaws.com/NEX-GDDP/BCSD/rcp45/day/atmos/tasmax/r1i1p1/v1.0/tasmax_day_BCSD_rcp45_r1i1p1_MPI-ESM-LR_2029.nc' data = requests.get(fp, stream=True) ds = xr.open_dataset(data.content) # raises TypeError: embedded NUL character ``` Ideal would be integration with the (hopefully) soon-to-be implemented dask.distributed features discussed in #798. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1075/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
596115014 | MDU6SXNzdWU1OTYxMTUwMTQ= | 3951 | series.to_xarray() fails when MultiIndex not sorted in xarray 0.15.1 | delgadom 3698640 | closed | 0 | 4 | 2020-04-07T19:56:26Z | 2020-04-08T02:19:11Z | 2020-04-08T02:19:11Z | CONTRIBUTOR | series.to_xarray() fails when MultiIndex not sorted in xarray 0.15.1 SummaryIt seems that Demonstrationxarray should be able to handle MultiIndices with unsorted dimensions. Using a fresh conda environment with xarray 0.14.1: ```python $ conda run -n py37xr14 python test.py
This fails in xarray 0.15.1 - note the data is not merely reordered - the data in column 'B' now has the incorrect values 4, 5, 6 rather than 1, 2, 3: ```python $ conda run -n py37xr15 python test.py
Test setup & environment infocontents of test.py```python import pandas as pd df = pd.DataFrame({'B': [1, 2, 3], 'A': [4, 5, 6]}) df = df.rename_axis('num').rename_axis('alpha', axis=1) print(">>> df") print(df) print("\n>>> df.stack('alpha')") print(df.stack('alpha')) print("\n>>> df.stack('alpha').to_xarray()") print(df.stack('alpha').to_xarray()) ```packages in py37xr14 environment```bash $ conda list -n py37xr14 # packages in environment at /Users/delgadom/miniconda3/envs/py37xr14: # # Name Version Build Channel ca-certificates 2020.4.5.1 hecc5488_0 conda-forge certifi 2020.4.5.1 py37hc8dfbb8_0 conda-forge libblas 3.8.0 16_openblas conda-forge libcblas 3.8.0 16_openblas conda-forge libcxx 9.0.1 2 conda-forge libffi 3.2.1 h4a8c4bd_1007 conda-forge libgfortran 4.0.0 2 conda-forge liblapack 3.8.0 16_openblas conda-forge libopenblas 0.3.9 h3d69b6c_0 conda-forge llvm-openmp 9.0.1 h28b9765_2 conda-forge ncurses 6.1 h0a44026_1002 conda-forge numpy 1.18.1 py37h7687784_1 conda-forge openssl 1.1.1f h0b31af3_0 conda-forge pandas 1.0.3 py37h94625e5_0 conda-forge pip 20.0.2 py_2 conda-forge python 3.7.6 h90870a6_5_cpython conda-forge python-dateutil 2.8.1 py_0 conda-forge python_abi 3.7 1_cp37m conda-forge pytz 2019.3 py_0 conda-forge readline 8.0 hcfe32e1_0 conda-forge setuptools 46.1.3 py37hc8dfbb8_0 conda-forge six 1.14.0 py_1 conda-forge sqlite 3.30.1 h93121df_0 conda-forge tk 8.6.10 hbbe82c9_0 conda-forge wheel 0.34.2 py_1 conda-forge xarray 0.14.1 py_1 conda-forge xz 5.2.5 h0b31af3_0 conda-forge zlib 1.2.11 h0b31af3_1006 conda-forge ```packages in py37xr15 environment```bash $ conda list -n py37xr15 # packages in environment at /Users/delgadom/miniconda3/envs/py37xr15: # # Name Version Build Channel ca-certificates 2020.4.5.1 hecc5488_0 conda-forge certifi 2020.4.5.1 py37hc8dfbb8_0 conda-forge libblas 3.8.0 16_openblas conda-forge libcblas 3.8.0 16_openblas conda-forge libcxx 9.0.1 2 conda-forge libffi 3.2.1 h4a8c4bd_1007 conda-forge libgfortran 4.0.0 2 conda-forge liblapack 3.8.0 16_openblas conda-forge libopenblas 0.3.9 h3d69b6c_0 conda-forge llvm-openmp 9.0.1 h28b9765_2 conda-forge ncurses 6.1 h0a44026_1002 conda-forge numpy 1.18.1 py37h7687784_1 conda-forge openssl 1.1.1f h0b31af3_0 conda-forge pandas 1.0.3 py37h94625e5_0 conda-forge pip 20.0.2 py_2 conda-forge python 3.7.6 h90870a6_5_cpython conda-forge python-dateutil 2.8.1 py_0 conda-forge python_abi 3.7 1_cp37m conda-forge pytz 2019.3 py_0 conda-forge readline 8.0 hcfe32e1_0 conda-forge setuptools 46.1.3 py37hc8dfbb8_0 conda-forge six 1.14.0 py_1 conda-forge sqlite 3.30.1 h93121df_0 conda-forge tk 8.6.10 hbbe82c9_0 conda-forge wheel 0.34.2 py_1 conda-forge xarray 0.15.1 py_0 conda-forge xz 5.2.5 h0b31af3_0 conda-forge zlib 1.2.11 h0b31af3_1006 conda-forge ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3951/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
316507549 | MDU6SXNzdWUzMTY1MDc1NDk= | 2071 | spell check: could not `bebroadcast` | delgadom 3698640 | closed | 0 | 0 | 2018-04-21T16:59:09Z | 2018-04-21T17:42:06Z | 2018-04-21T17:42:06Z | CONTRIBUTOR | Spelling error in value error raised on index-based assignment with incorrect shapeVery easy one here: ```python In [1]: import xarray as xr, pandas as pd, numpy as np In [2]: da = xr.DataArray(np.random.random((2, 3)), dims=['x','y']) In [3]: da Out[3]: <xarray.DataArray (x: 2, y: 3)> array([[0.882927, 0.604024, 0.316146], [0.06342 , 0.503182, 0.297988]]) Dimensions without coordinates: x, y In [4]: da[0, 1] = [1, 2]ValueError Traceback (most recent call last) <ipython-input-4-1fbe1d206e00> in <module>() ----> 1 da[0, 1] = [1, 2] ~/miniconda2/envs/xarray-dev/lib/python3.6/site-packages/xarray/core/dataarray.py in setitem(self, key, value) 486 key = {k: v.variable if isinstance(v, DataArray) else v 487 for k, v in self._item_key_to_dict(key).items()} --> 488 self.variable[key] = value 489 490 def delitem(self, key): ~/miniconda2/envs/xarray-dev/lib/python3.6/site-packages/xarray/core/variable.py in setitem(self, key, value) 682 'shape mismatch: value array of shape %s could not be' 683 'broadcast to indexing result with %s dimensions' --> 684 % (value.shape, len(dims))) 685 if value.ndim == 0: 686 value = Variable((), value) ValueError: shape mismatch: value array of shape (2,) could not bebroadcast to indexing result with 0 dimensions In [5]: xr.show_versions()
/Users/delgadom/miniconda2/envs/xarray-dev/lib/python3.6/site-packages/h5py/init.py:36: FutureWarning: Conversion of the second argument of issubdtype from INSTALLED VERSIONScommit: None python: 3.6.4.final.0 python-bits: 64 OS: Darwin OS-release: 17.4.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 xarray: 0.10.2 pandas: 0.22.0 numpy: 1.14.2 scipy: 1.0.0 netCDF4: 1.3.1 h5netcdf: 0.5.0 h5py: 2.7.1 Nio: None zarr: 2.2.0 bottleneck: 1.2.1 cyordereddict: None dask: 0.17.2 distributed: 1.21.4 matplotlib: 2.2.2 cartopy: 0.15.1 seaborn: 0.8.1 setuptools: 38.5.1 pip: 9.0.1 conda: None pytest: 3.4.1 IPython: 6.2.1 sphinx: 1.6.6 ``` Problem descriptionThe error message in variable.py#L682 seems to be missing an end-of-line space. Happy to create a PR. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2071/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
241389297 | MDU6SXNzdWUyNDEzODkyOTc= | 1472 | .sel(drop=True) fails to drop coordinate | delgadom 3698640 | closed | 0 | 4 | 2017-07-07T21:49:35Z | 2017-07-10T16:08:30Z | 2017-07-10T15:54:23Z | CONTRIBUTOR | Using both xarray 0.9.6 and current (0.9.6-16-gb201ff7), Setup: ```python In [1]: import xarray as xr, pandas as pd, numpy as np In [2]: years = pd.Index( ...: pd.date_range('1981-01-01', '2100-01-01', freq='A', closed='left'), ...: name='time') ...: ages = pd.Index(['age0', 'age1', 'age2', 'age3'], name='age') In [3]: arr = xr.DataArray( ...: np.random.random((len(years), 4)), dims=('time', 'age'), ...: coords={'time': years, 'age': ages}) In [4]: arr Out[4]: <xarray.DataArray (time: 119, age: 4)> array([[ 0.755194, 0.1316 , 0.283485, 0.616929], [ 0.01667 , 0.907853, 0.667366, 0.146755], [ 0.338319, 0.782972, 0.367624, 0.390907], ..., [ 0.453521, 0.807693, 0.094811, 0.603297], [ 0.405114, 0.821691, 0.633314, 0.259406], [ 0.41722 , 0.012957, 0.329089, 0.774966]]) Coordinates: * age (age) object 'age0' 'age1' 'age2' 'age3' * time (time) datetime64[ns] 1981-12-31 1982-12-31 1983-12-31 ... ``` I would expect the following operations to return identical results: ```python In [5]: arr.sel(time='2012', drop=True) Out[5]: <xarray.DataArray (time: 1, age: 4)> array([[ 0.086045, 0.467905, 0.101005, 0.503311]]) Coordinates: * age (age) object 'age0' 'age1' 'age2' 'age3' Dimensions without coordinates: time In [6]: arr.isel(time=31, drop=True)
Out[6]:
<xarray.DataArray (age: 4)>
array([ 0.086045, 0.467905, 0.101005, 0.503311])
Coordinates:
* age (age) object 'age0' 'age1' 'age2' 'age3'
The same behavior is seen for ```python In [7]: ds = xr.Dataset({'arr': arr}) In [8]: ds.sel(time='2012', drop=True) Out[8]: <xarray.Dataset> Dimensions: (age: 4, time: 1) Coordinates: * age (age) object 'age0' 'age1' 'age2' 'age3' Dimensions without coordinates: time Data variables: arr (time, age) float64 0.08604 0.4679 0.101 0.5033 In [9]: ds.isel(time=31, drop=True) Out[9]: <xarray.Dataset> Dimensions: (age: 4) Coordinates: * age (age) object 'age0' 'age1' 'age2' 'age3' Data variables: arr (age) float64 0.08604 0.4679 0.101 0.5033 ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1472/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);