issues
3 rows where state = "closed", type = "issue" and user = 193170 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1174427142 | I_kwDOAMm_X85GAFYG | 6383 | `Dataset.to_zarr` compute=False should allow access to awaitable | shaunc 193170 | closed | 0 | 5 | 2022-03-20T03:12:29Z | 2022-03-21T00:47:45Z | 2022-03-20T03:42:01Z | NONE | What happened?I have xarray, zarr installed, but not dask, and am trying to call to_zarr in an async routine. I am looking for something I can However, not using Dask. Is there some way to get an awaitable from this object without a dask client? What did you expect to happen?I should get something back I can await in my async routine. Minimal Complete Verifiable Example```Python import xarray as xr from asyncio import get_event_loop ds = xr.Dataset(data_vars = dict(x = ('x', [1, 2]))) deld = ds.to_zarr("bar.zarr", compute=False) loop.run_until_complete(deld. ...?) ``` Relevant log outputNo response Anything else we need to know?No response EnvironmentINSTALLED VERSIONScommit: None python: 3.8.5 (default, Sep 4 2020, 02:22:02) [Clang 10.0.0 ] python-bits: 64 OS: Darwin OS-release: 20.6.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.10.4 libnetcdf: 4.7.3 xarray: 2022.3.0 pandas: 1.4.1 numpy: 1.22.3 scipy: 1.6.2 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: None Nio: None zarr: 2.11.1 cftime: 1.5.1.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.2 dask: 2021.10.0 distributed: 2021.10.0 matplotlib: 3.1.3 cartopy: None seaborn: None numbagg: None fsspec: 2022.02.0 cupy: None pint: None sparse: None setuptools: 60.7.1 pip: 22.0.3 conda: 4.11.0 pytest: 7.1.1 IPython: 7.31.1 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6383/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
862110000 | MDU6SXNzdWU4NjIxMTAwMDA= | 5192 | Writing np.bool8 data array reads in as int8 | shaunc 193170 | closed | 0 | 2 | 2021-04-19T23:33:20Z | 2021-04-20T05:19:44Z | 2021-04-20T05:19:44Z | NONE | What happened: I have an dataarray with dtype What you expected to happen: The loaded data array should have dtype bool Minimal Complete Verifiable Example: I have had a hard time reducing this to a sample. The data array comes from a larger dataset which exhibits the same problem. I can copy the dataarray using copy() and it still exhibits the problem; however if I build a new data array using the constructor, the new array doesn't exhibit the problem. As far as I can tell, though, the original and the rebuilt dataarray are otherwise identical. ```python in a pdb session(Pdb) ci <xarray.DataArray 'cut_inclusive' (cut: 15)> array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) Dimensions without coordinates: cut (Pdb) ci.to_netcdf('foo_ci.nca', engine="h5netcdf") (Pdb) csi = xr.read_dataarray('foo_ci_nca', engine="h5netcdf"); csi <xarray.DataArray 'cut_inclusive' (cut: 15)> array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int8) Dimensions without coordinates: cut (Pdb) ci2 = xr.DataArray(ci, dims=('cut', )) (Pdb) ci2.equals(ci) True (Pdb) ci2.to_netcdf('foo_ci2.nca', engine="h5netcdf") (Pdb) csi2 = xr.open_dataarray('foo_ci2.nca', engine="h5netcdf"); csi2 <xarray.DataArray 'cut_inclusive' (cut: 15)> array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) Dimensions without coordinates: cut (Pdb) ci3 = ci.copy() (Pdb) ci3.to_netcdf('foo_ci3.nca', engine="h5netcdf") (Pdb) csi3 = xr.open_dataarray('foo_ci3.nca', engine="h5netcdf"); csi3 <xarray.DataArray 'cut_inclusive' (cut: 15)> array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int8) Dimensions without coordinates: cut ``` Anything else we need to know?: I am at a loss how to investigate why Environment: Output of <tt>xr.show_versions()</tt>xr.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.8.5 (default, Sep 4 2020, 07:30:14) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 5.8.0-48-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.12.0 libnetcdf: None xarray: 0.17.0 pandas: 1.2.4 numpy: 1.20.2 scipy: 1.6.2 netCDF4: None pydap: None h5netcdf: 0.10.0 h5py: 3.2.1 Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2021.04.0 distributed: 2021.04.0 matplotlib: 3.4.1 cartopy: None seaborn: None numbagg: None pint: None setuptools: 51.0.0 pip: 20.3.1 conda: None pytest: 6.2.3 IPython: 7.22.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5192/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
758165023 | MDU6SXNzdWU3NTgxNjUwMjM= | 4658 | drop_sel indices in dimension that doesn't have coordinates? | shaunc 193170 | closed | 0 | 3 | 2020-12-07T05:17:36Z | 2021-01-18T23:59:09Z | 2021-01-18T23:59:09Z | NONE | Is your feature request related to a problem? Please describe. I am trying to drop particular indices from a dimension that doesn't have coordinates. Following: drop_sel() documentation,
but leaving out the coordinate labels:
Describe the solution you'd like I would think Describe alternatives you've considered As far as I know, I could either create coordinates especially to in order to drop, or rebuild a new dataset. Both are not congenial. (I'd be grateful to know if there is actually a straightforward way to do this I've overlooked. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4658/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);