issues
2 rows where state = "closed", type = "issue" and user = 1610850 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
658361860 | MDU6SXNzdWU2NTgzNjE4NjA= | 4231 | as_shared_dtype coerces scalars into numpy regardless of other array types | jacobtomlinson 1610850 | closed | 0 | 0 | 2020-07-16T16:36:19Z | 2020-07-24T20:38:57Z | 2020-07-24T20:38:57Z | CONTRIBUTOR | Related to #4212 When trying to get the Calculating Seasonal Averages from Timeseries of Monthly Means example from the documentation to work with I dug through this with @quasiben and it seems to be related to the What happened: Running the MCVE below results in However Cupy is then passed this numpy array to it's where function which does raises the exception. What you expected to happen: The Therefore a few things could be done here: 1. Xarray could not convert the int/float to a numpy array 1. It could convert it to a cupy array 1. Cupy could be modified to accept a numpy scalar. We thew together a quick fix for option 2, which I'll put in a draft PR. But happy to discuss the alternatives. Minimal Complete Verifiable Example: ```python import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt import cupy as cp Load datads = xr.tutorial.open_dataset("rasm").load() Move data to GPUds.Tair.data = cp.asarray(ds.Tair.data) ds_unweighted = ds.groupby("time.season").mean("time") Calculate the weights by grouping by 'time.season'.month_length = ds.time.dt.days_in_month weights = ( month_length.groupby("time.season") / month_length.groupby("time.season").sum() ) Test that the sum of the weights for each season is 1.0np.testing.assert_allclose(weights.groupby("time.season").sum().values, np.ones(4)) Move weights to GPUweights.data = cp.asarray(weights.data) Calculate the weighted averageds_weighted = ds * weights ds_weighted = ds_weighted.groupby("time.season") ds_weighted = ds_weighted.sum(dim="time") ``` Traceback```python-traceback Traceback (most recent call last): File "/home/jacob/miniconda3/envs/dask/lib/python3.7/runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "/home/jacob/miniconda3/envs/dask/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/jacob/.vscode-server/extensions/ms-python.python-2020.6.91350/pythonFiles/lib/python/debugpy/__main__.py", line 45, in <module> cli.main() File "/home/jacob/.vscode-server/extensions/ms-python.python-2020.6.91350/pythonFiles/lib/python/debugpy/../debugpy/server/cli.py", line 430, in main run() File "/home/jacob/.vscode-server/extensions/ms-python.python-2020.6.91350/pythonFiles/lib/python/debugpy/../debugpy/server/cli.py", line 267, in run_file runpy.run_path(options.target, run_name=compat.force_str("__main__")) File "/home/jacob/miniconda3/envs/dask/lib/python3.7/runpy.py", line 263, in run_path pkg_name=pkg_name, script_name=fname) File "/home/jacob/miniconda3/envs/dask/lib/python3.7/runpy.py", line 96, in _run_module_code mod_name, mod_spec, pkg_name, script_name) File "/home/jacob/miniconda3/envs/dask/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/jacob/Projects/pydata/xarray/test_seasonal_averages.py", line 32, in <module> ds_weighted = ds_weighted.sum(dim="time") File "/home/jacob/Projects/pydata/xarray/xarray/core/common.py", line 84, in wrapped_func func, dim, skipna=skipna, numeric_only=numeric_only, **kwargs File "/home/jacob/Projects/pydata/xarray/xarray/core/groupby.py", line 994, in reduce return self.map(reduce_dataset) File "/home/jacob/Projects/pydata/xarray/xarray/core/groupby.py", line 923, in map return self._combine(applied) File "/home/jacob/Projects/pydata/xarray/xarray/core/groupby.py", line 943, in _combine applied_example, applied = peek_at(applied) File "/home/jacob/Projects/pydata/xarray/xarray/core/utils.py", line 183, in peek_at peek = next(gen) File "/home/jacob/Projects/pydata/xarray/xarray/core/groupby.py", line 922, in <genexpr> applied = (func(ds, *args, **kwargs) for ds in self._iter_grouped()) File "/home/jacob/Projects/pydata/xarray/xarray/core/groupby.py", line 990, in reduce_dataset return ds.reduce(func, dim, keep_attrs, **kwargs) File "/home/jacob/Projects/pydata/xarray/xarray/core/dataset.py", line 4313, in reduce **kwargs, File "/home/jacob/Projects/pydata/xarray/xarray/core/variable.py", line 1591, in reduce data = func(input_data, axis=axis, **kwargs) File "/home/jacob/Projects/pydata/xarray/xarray/core/duck_array_ops.py", line 324, in f return func(values, axis=axis, **kwargs) File "/home/jacob/Projects/pydata/xarray/xarray/core/nanops.py", line 111, in nansum a, mask = _replace_nan(a, 0) File "/home/jacob/Projects/pydata/xarray/xarray/core/nanops.py", line 21, in _replace_nan return where_method(val, mask, a), mask File "/home/jacob/Projects/pydata/xarray/xarray/core/duck_array_ops.py", line 274, in where_method return where(cond, data, other) File "/home/jacob/Projects/pydata/xarray/xarray/core/duck_array_ops.py", line 268, in where return _where(condition, *as_shared_dtype([x, y])) File "/home/jacob/Projects/pydata/xarray/xarray/core/duck_array_ops.py", line 56, in f return wrapped(*args, **kwargs) File "<__array_function__ internals>", line 6, in where File "cupy/core/core.pyx", line 1343, in cupy.core.core.ndarray.__array_function__ File "/home/jacob/miniconda3/envs/dask/lib/python3.7/site-packages/cupy/sorting/search.py", line 211, in where return _where_ufunc(condition.astype('?'), x, y) File "cupy/core/_kernel.pyx", line 906, in cupy.core._kernel.ufunc.__call__ File "cupy/core/_kernel.pyx", line 90, in cupy.core._kernel._preprocess_args TypeError: Unsupported type <class 'numpy.ndarray'> ```Anything else we need to know?: Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: 52043bc57f20438e8923790bca90b646c82442ad python: 3.7.6 | packaged by conda-forge | (default, Jun 1 2020, 18:57:50) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 5.3.0-62-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 libhdf5: None libnetcdf: None xarray: 0.15.1 pandas: 0.25.3 numpy: 1.18.5 scipy: 1.5.0 netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.2.0 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: 0.9.8.3 iris: None bottleneck: None dask: 2.20.0 distributed: 2.20.0 matplotlib: 3.2.2 cartopy: 0.17.0 seaborn: 0.10.1 numbagg: None pint: None setuptools: 49.1.0.post20200704 pip: 20.1.1 conda: None pytest: 5.4.3 IPython: 7.16.1 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4231/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
346525275 | MDU6SXNzdWUzNDY1MjUyNzU= | 2335 | Spurious "Zarr requires uniform chunk sizes excpet for final chunk." | jacobtomlinson 1610850 | closed | 0 | 3 | 2018-08-01T09:43:06Z | 2018-08-14T17:15:02Z | 2018-08-14T17:15:01Z | CONTRIBUTOR | Problem descriptionUsing xarray 0.10.7 I'm getting the following error when trying to write out a zarr.
Those chunks look fine to me, only one has an inconsistent chunking and it's the final chunk in the second index. Seems related to #2225. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2335/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);