issues
2 rows where state = "closed", type = "issue" and user = 1117224 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 309100522 | MDU6SXNzdWUzMDkxMDA1MjI= | 2018 | MemoryError when using save_mfdataset() | NicWayand 1117224 | closed | 0 | 1 | 2018-03-27T19:22:28Z | 2020-03-28T07:51:17Z | 2020-03-28T07:51:17Z | NONE | Code Sample, a copy-pastable example if possible```python import xarray as xr import dask Dummy data that on disk is about ~200GBda = xr.DataArray(dask.array.random.normal(0, 1, size=(12,408,1367,304,448), chunks=(1, 1, 1, 304, 448)), dims=('ensemble', 'init_time', 'fore_time', 'x', 'y')) Perform some calculation on the dask datada_sum = da.sum(dim='x').sum(dim='y')(2525)/(10**6) Write to multiple filesc_e, datasets = zip(*da_sum.to_dataset(name='sic').groupby('ensemble')) paths = ['file_%s.nc' % e for e in c_e] xr.save_mfdataset(datasets, paths) ``` Problem descriptionResults in a MemoryError, when dask should handle writing this OOM DataArray to multiple within-memory-sized netcdf files. Related SO post here Expected Output12 netcdf files (grouped by the ensemble dim). Output of
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/2018/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 171504099 | MDU6SXNzdWUxNzE1MDQwOTk= | 970 | Multiple preprocessing functions in open_mfdataset? | NicWayand 1117224 | closed | 0 | 3 | 2016-08-16T20:01:22Z | 2016-08-17T07:01:02Z | 2016-08-16T21:46:43Z | NONE | I would like to have multiple functions applied during a open_mfdataset call. Using one works great:
Does the current behavior include multiple calls? (apologizes if this is defined somewhere, I couldn't find any multiple calls examples) Something like:
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/970/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);