issues
8 rows where repo = 13221727 and user = 367900 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1216178209 | PR_kwDOAMm_X8420Do_ | 6516 | Use new importlib.metadata.entry_points interface where available | bcbnz 367900 | closed | 0 | 1 | 2022-04-26T16:06:35Z | 2022-04-27T06:01:08Z | 2022-04-27T01:07:51Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/6516 | With Python 3.10, the entry_points() method returning a SelectableGroups dict interface was deprecated. The preferred way is to now filter by group through a keyword argument.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6516/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
856900805 | MDU6SXNzdWU4NTY5MDA4MDU= | 5148 | Handling of non-string dimension names | bcbnz 367900 | open | 0 | 5 | 2021-04-13T12:13:44Z | 2022-04-09T01:36:19Z | CONTRIBUTOR | While working on a pull request (#5149) for #5146 I came across an inconsistency in allowed dimension names. If I try and create a DataArray with a non-string dimension, I get a TypeError: ```python console
But creating it with a string and renaming it works: ```python console
I can create a dataset via this renaming, but trying to get the repr value fails as ```python console
~/software/external/xarray/xarray/core/formatting.py in dim_summary(obj) 422 423 def dim_summary(obj): --> 424 elements = [f"{k}: {v}" for k, v in obj.sizes.items()] 425 return ", ".join(elements) 426 ~/software/external/xarray/xarray/core/formatting.py in <listcomp>(.0) 422 423 def dim_summary(obj): --> 424 elements = [f"{k}: {v}" for k, v in obj.sizes.items()] 425 return ", ".join(elements) 426 /usr/lib/python3.9/_collections_abc.py in iter(self) 847 848 def iter(self): --> 849 for key in self._mapping: 850 yield (key, self._mapping[key]) 851 ~/software/external/xarray/xarray/core/utils.py in iter(self) 437 438 def iter(self) -> Iterator[K]: --> 439 return iter(self.mapping) 440 441 def len(self) -> int: ~/software/external/xarray/xarray/core/utils.py in iter(self) 504 def iter(self) -> Iterator[K]: 505 # see #4571 for the reason of the type ignore --> 506 return iter(sorted(self.mapping)) # type: ignore[type-var] 507 508 def len(self) -> int: TypeError: '<' not supported between instances of 'str' and 'int' ``` The same thing happens if I call rename on the dataset rather than the array it is initialised with. If the initialiser requires the dimension names to be strings, and other code (which includes the HTML formatter I was looking at when I found this) assume that they are, then Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: 851d85b9203b49039237b447b3707b270d613db5 python: 3.9.2 (default, Feb 20 2021, 18:40:11) [GCC 10.2.0] python-bits: 64 OS: Linux OS-release: 5.11.13-arch1-1 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_NZ.UTF-8 LOCALE: en_NZ.UTF-8 libhdf5: 1.12.0 libnetcdf: 4.7.4 xarray: 0.17.0 pandas: 1.2.3 numpy: 1.20.1 scipy: 1.6.2 netCDF4: 1.5.6 pydap: None h5netcdf: 0.10.0 h5py: 3.2.1 Nio: None zarr: None cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: 1.2.2 cfgrib: None iris: None bottleneck: 1.3.2 dask: 2021.03.0 distributed: 2021.03.0 matplotlib: 3.4.1 cartopy: 0.18.0 seaborn: 0.11.1 numbagg: None pint: None setuptools: 54.2.0 pip: 20.3.1 conda: None pytest: 6.2.3 IPython: 7.22.0 sphinx: 3.5.4 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5148/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
856728083 | MDU6SXNzdWU4NTY3MjgwODM= | 5146 | HTML formatting of non-string attribute names fails | bcbnz 367900 | closed | 0 | 3 | 2021-04-13T08:36:31Z | 2021-11-11T18:21:31Z | 2021-11-11T18:21:31Z | CONTRIBUTOR | Working in a notebook (and presumably, anywhere else that uses the HTML formatter to show an array), non-string attribute keys cause an exception. The output then falls back to the repr value. ```python console In [1]: import xarray as xr In [2]: data = xr.DataArray([1, 2, 3], attrs={1: 3.14}) In [3]: data.attrs Out[3]: {1: 3.14} In [4]: data
AttributeError Traceback (most recent call last) /usr/lib/python3.9/site-packages/IPython/core/formatters.py in call(self, obj) 343 method = get_real_method(obj, self.print_method) 344 if method is not None: --> 345 return method() 346 return None 347 else: ~/software/external/xarray/xarray/core/common.py in repr_html(self) 148 if OPTIONS["display_style"] == "text": 149 return f" {escape(repr(self))}" --> 150 return formatting_html.array_repr(self) 151 152 def _iter(self: Any) -> Iterator[Any]: ~/software/external/xarray/xarray/core/formatting_html.py in array_repr(arr) 269 sections.append(coord_section(arr.coords)) 270 --> 271 sections.append(attr_section(arr.attrs)) 272 273 return _obj_repr(arr, header_components, sections) ~/software/external/xarray/xarray/core/formatting_html.py in _mapping_section(mapping, name, details_func, max_items_collapse, enabled) 171 return collapsible_section( 172 name, --> 173 details=details_func(mapping), 174 n_items=n_items, 175 enabled=enabled, ~/software/external/xarray/xarray/core/formatting_html.py in summarize_attrs(attrs) 47 48 def summarize_attrs(attrs): ---> 49 attrs_dl = "".join( 50 f"<dt>{escape(k)} :</dt>" f"<dd>{escape(str(v))}</dd>" 51 for k, v in attrs.items() ~/software/external/xarray/xarray/core/formatting_html.py in <genexpr>(.0) 48 def summarize_attrs(attrs): 49 attrs_dl = "".join( ---> 50 f"<dt>{escape(k)} :</dt>" f"<dd>{escape(str(v))}</dd>" 51 for k, v in attrs.items() 52 ) /usr/lib/python3.9/html/init.py in escape(s, quote) 17 translated. 18 """ ---> 19 s = s.replace("&", "&") # Must be done first! 20 s = s.replace("<", "<") 21 s = s.replace(">", ">") AttributeError: 'int' object has no attribute 'replace'
Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: c91983d4765b23e0474231c85057d31f9b6b2f33 python: 3.9.2 (default, Feb 20 2021, 18:40:11) [GCC 10.2.0] python-bits: 64 OS: Linux OS-release: 5.11.13-arch1-1 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_NZ.UTF-8 LOCALE: en_NZ.UTF-8 libhdf5: 1.12.0 libnetcdf: 4.7.4 xarray: 0.17.0 pandas: 1.2.3 numpy: 1.20.1 scipy: 1.6.2 netCDF4: 1.5.6 pydap: None h5netcdf: 0.10.0 h5py: 3.2.1 Nio: None zarr: None cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: 1.2.2 cfgrib: None iris: None bottleneck: 1.3.2 dask: 2021.03.0 distributed: 2021.03.0 matplotlib: 3.4.1 cartopy: 0.18.0 seaborn: None numbagg: None pint: None setuptools: 54.2.0 pip: 20.3.1 conda: None pytest: 6.2.3 IPython: 7.22.0 sphinx: 3.5.4 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5146/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
567678992 | MDU6SXNzdWU1Njc2Nzg5OTI= | 3781 | to_netcdf() doesn't work with multiprocessing scheduler | bcbnz 367900 | open | 0 | 4 | 2020-02-19T16:28:22Z | 2021-09-25T16:02:41Z | CONTRIBUTOR | If I create a chunked lazily-computed array, writing it to disk with MCVE Code Sample```python import dask import numpy as np import xarray as xr if name == "main": # Simple worker function. def inner(ds): if sum(ds.dims.values()) == 0: return ds return ds**2
``` Expected OutputComplete netCDF files should be created from all three schedulers. Problem DescriptionThe thread pool and distributed local cluster schedulers result in a complete output. The process pool scheduler fails when trying to write (note that test-process.nc is created with the header and coordinate information, but no actual data is written). The traceback is:
With a bit of editing of the system multiprocessing module I was able to determine that the lock being reported by this exception was the first lock created. I then added a breakpoint to the Lock constructor to get a traceback of what was creating it: | File | Line | Function |----------------------|------|------------------------- | core/dataset.py | 1535 | Dataset.to_netcdf | backends/api.py | 1071 | to_netcdf | backends/netCDF4_.py | 350 | open | backends/locks.py | 114 | get_write_lock | backends/locks.py | 39 | _get_multiprocessing_lock This last function creates the offending multiprocessing.Lock() object. Note that there are six Locks constructed and so its possible that the later-created ones would also cause an issue. The h5netcdf backend has the same problem with Lock. However the SciPy backend gives a NotImplementedError for this:
I'm not sure how simple it would be to get this working with the multiprocessing scheduler, or how vital it is given that the distributed scheduler works. If nothing else, it would be good to get the same NotImplementedError as with the SciPy backend. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3781/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
856901056 | MDExOlB1bGxSZXF1ZXN0NjE0NDA4MzQz | 5149 | Convert attribute and dimension names to strings when generating HTML repr | bcbnz 367900 | closed | 0 | 5 | 2021-04-13T12:14:03Z | 2021-05-04T03:39:00Z | 2021-05-04T03:38:53Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5149 | The standard repr() already handled non-string attribute names, but the HTML formatter failed when trying to escape HTML entitites in non-string names. This just calls str() before escape(). It also includes tests for Dataset, DataArray and Variable. Reported in #5146. ~~Note that there may be a need to do the same for dimension names if they are allowed to be strings. Currently dimensions must be created as strings but can later be renamed to non-strings, see #5148.~~ Dimensions can be non-str, updated.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5149/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
853473276 | MDU6SXNzdWU4NTM0NzMyNzY= | 5132 | Backend caching should not use a relative path | bcbnz 367900 | closed | 0 | 4 | 2021-04-08T13:27:03Z | 2021-04-15T12:12:26Z | 2021-04-15T12:12:26Z | CONTRIBUTOR | Datasets opened from disk are cached with a key based (amongst other things) on their filename. If you have the same filename in different directories, and open them after changing directory, a cache collision occurs as the filename is the same and so the first opened dataset is always returned. Minimal Complete Verifiable Example: ```python import os from pathlib import Path import tempfile import numpy as np import xarray as xr with tempfile.TemporaryDirectory() as d: base = Path(d).resolve()
``` What happened: On master, the final assertion is triggered as the cache returns the zeros array instead of the ones. What you expected to happen: No assertion. Anything else we need to know?:
This was introduced in 50d97e9d. I found this with the above test script (named
I then manually confirmed this by running the script on 50d97e9d and its parent. The caching is performed by to
fixes this for me. I guess this should be done (if needed) by each backend to keep CachingFileManager as general as possible. If my analysis and proposed solution seems correct, I'm happy to work up a pull request with these fixes and some regression tests. If you're wondering about the use case where I bumped into this problem: we're using Click for a CLI, and using its test helpers. One of these ( Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: ec4e8b5f279e28588eee8ff43a328ca6c2f89f01 python: 3.9.2 (default, Feb 20 2021, 18:40:11) [GCC 10.2.0] python-bits: 64 OS: Linux OS-release: 5.11.11-arch1-1 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_NZ.UTF-8 LOCALE: en_NZ.UTF-8 libhdf5: 1.12.0 libnetcdf: 4.7.4 xarray: 0.17.0 pandas: 1.2.3 numpy: 1.20.1 scipy: 1.6.2 netCDF4: 1.5.6 pydap: None h5netcdf: 0.9.0 h5py: 3.1.0 Nio: None zarr: None cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: 1.2.1 cfgrib: None iris: None bottleneck: 1.3.2 dask: 2021.03.0 distributed: 2021.03.0 matplotlib: 3.4.1 cartopy: 0.18.0 seaborn: None numbagg: None pint: None setuptools: 54.2.0 pip: 20.3.1 conda: None pytest: 6.2.3 IPython: 7.22.0 sphinx: 3.5.2 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5132/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
808558647 | MDExOlB1bGxSZXF1ZXN0NTczNTc5NzUx | 4911 | Fix behaviour of min_count in reducing functions | bcbnz 367900 | closed | 0 | 6 | 2021-02-15T13:53:34Z | 2021-02-19T08:12:39Z | 2021-02-19T08:12:02Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4911 | The first commit modifies existing tests to check Dask-backed arrays are not computed. It also adds some specific checks that the correct result (NaN or a number as appropriate) is returned and some tests for checking membership of The second commit fixes these failures:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4911/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
807089005 | MDU6SXNzdWU4MDcwODkwMDU= | 4898 | Sum and prod with min_count forces evaluation | bcbnz 367900 | closed | 0 | 5 | 2021-02-12T09:42:06Z | 2021-02-19T08:12:02Z | 2021-02-19T08:12:01Z | CONTRIBUTOR | If I use the Minimal Complete Verifiable Example: ```python import numpy as np import xarray as xr def worker(da): if da.shape == (0, 0): return da
da = xr.DataArray( np.random.normal(size=(20, 500)), dims=("x", "y"), coords=(np.arange(20), np.arange(500)), ) da = da.chunk(dict(x=5)) lazy = da.map_blocks(worker) result1 = lazy.sum("x", skipna=True) result2 = lazy.sum("x", skipna=True, min_count=5) ``` What happened: What you expected to happen: No output or exceptions, as the result1 and result2 arrays are not printed or saved. Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.9.1 (default, Feb 6 2021, 06:49:13) [GCC 10.2.0] python-bits: 64 OS: Linux OS-release: 5.10.15-arch1-1 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: en_NZ.UTF-8 LOCALE: en_NZ.UTF-8 libhdf5: 1.12.0 libnetcdf: 4.7.4 xarray: 0.16.2 pandas: 1.2.1 numpy: 1.20.0 scipy: 1.6.0 netCDF4: 1.5.5.1 pydap: None h5netcdf: 0.9.0 h5py: 3.1.0 Nio: None zarr: None cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: 1.2.0 cfgrib: None iris: None bottleneck: 1.3.2 dask: 2020.12.0 distributed: 2020.12.0 matplotlib: 3.3.4 cartopy: 0.18.0 seaborn: None numbagg: None pint: None setuptools: 53.0.0 pip: 20.3.1 conda: None pytest: 6.2.1 IPython: 7.19.0 sphinx: 3.4.3 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4898/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);