issues
5 rows where repo = 13221727 and user = 16655388 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
368833116 | MDU6SXNzdWUzNjg4MzMxMTY= | 2478 | masked_array write/read differences between xarray and netCDF4 | sbiner 16655388 | closed | 0 | 3 | 2018-10-10T20:12:19Z | 2023-09-13T12:41:03Z | 2023-09-13T12:41:02Z | NONE | Here is code used to read/write a masked_array with the netCDF4 and xarray modules. As seen if you run the code, for 3 cases the masked_value is read as a np.nan. However, for the netcdf file written by netCDF4 and read by xarray, the masked_value is the default _FillValue of 9.96920997e+36. I wonder if this is expected or if I am doing something wrong. ```python import xarray as xr import netCDF4 as nc import numpy as np import os data = np.ma.array([1.,2.], mask = [True, False]) create file with netcdf$nc_file = 'ncfile.nc' if os.path.exists(nc_file): os.remove(nc_file) ds = nc.Dataset(nc_file, 'w') ds.createDimension('dim1', 2) var = ds.createVariable('data', 'f8', dimensions = ('dim1')) var[:] = data ds.close() create file with xarrayda = xr.DataArray(data, name = 'data', dims = {'dim1':2}) nc_file = 'xrfile.nc' if os.path.exists(nc_file): os.remove(nc_file) da.to_netcdf(nc_file, 'w') da.close() print('original data: {}'.format(data)) da = xr.open_dataset('ncfile.nc').data print('data from nc read by xr: {}'.format(da.values)) da = xr.open_dataset('xrfile.nc').data print('data from xr read by xr: {}'.format(da.values)) data = nc.Dataset('ncfile.nc').variables['data'][:] print('data from nc read by nc: {}'.format(da.values)) data = nc.Dataset('xrfile.nc').variables['data'][:] print('data from xr read by nc: {}'.format(da.values)) print('done') ``` Here is the output I get: ``` original data: [-- 2.0] data from nc read by xr: [9.96920997e+36 2.00000000e+00] data from xr read by xr: [nan 2.] data from nc read by nc: [nan 2.] data from xr read by nc: [nan 2.] done ``` Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2478/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
905476569 | MDU6SXNzdWU5MDU0NzY1Njk= | 5396 | bug with to_netcdf when reading dataset via THREDDS | sbiner 16655388 | open | 0 | 1 | 2021-05-28T14:08:12Z | 2022-02-03T11:49:29Z | NONE | I am trying to extract data for a specific station from data observations accessed via THREDDS. At first I got an error but a colleague found a way to make it work. In the code below it works if I do not know if this behaviour is expected and/or linked to the way the data is 'served' via THREDDS but I would never have found the way around it by myself. ``` import xarray as xr CLEF_STATION = "MONTREAL" NOM_VAR = 'prsn' APPLY_PATCH = False url_pavics = "http://pavics.ouranos.ca:8083/twitcher/ows/proxy/thredds/dodsC" url_donnees_homo = "/".join((url_pavics, "datasets/station_obs/ECCC_AHCCD_gen2_precipitation.ncml")) ds = xr.open_dataset(url_donnees_homo) data for specific station(s)dsr = ds.sel(station=ds.station_name.str.contains(CLEF_STATION)) apply patchif APPLY_PATCH: for var in dsr.variables: if dsr[var].dtype == 'O': dsr[var].encoding = {} save to a netcdf filedsr.to_netcdf("out.nc", format="NETCDF4_CLASSIC") ``` What happened: When running this I get the following error ``` runfile('/Users/sbiner/cloud/OneDrive - Ouranos inc/job/stagiaires_etudiants/2021_tempete_neige/code/issue_xaray.py', wdir='/Users/sbiner/cloud/OneDrive - Ouranos inc/job/stagiaires_etudiants/2021_tempete_neige/code') Traceback (most recent call last): File "src/netCDF4/_netCDF4.pyx", line 4931, in netCDF4._netCDF4.Variable.setitem ValueError: cannot reshape array of size 7 into shape (1,1) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/sbiner/cloud/OneDrive - Ouranos inc/job/stagiaires_etudiants/2021_tempete_neige/code/issue_xaray.py", line 14, in <module> dsr.to_netcdf("out.nc", format="NETCDF4_CLASSIC") File "/Users/sbiner/anaconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataset.py", line 1689, in to_netcdf return to_netcdf( File "/Users/sbiner/anaconda3/envs/py38/lib/python3.8/site-packages/xarray/backends/api.py", line 1107, in to_netcdf dump_to_store( File "/Users/sbiner/anaconda3/envs/py38/lib/python3.8/site-packages/xarray/backends/api.py", line 1154, in dump_to_store store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims) File "/Users/sbiner/anaconda3/envs/py38/lib/python3.8/site-packages/xarray/backends/common.py", line 255, in store self.set_variables( File "/Users/sbiner/anaconda3/envs/py38/lib/python3.8/site-packages/xarray/backends/common.py", line 297, in set_variables writer.add(source, target) File "/Users/sbiner/anaconda3/envs/py38/lib/python3.8/site-packages/xarray/backends/common.py", line 146, in add target[...] = source File "/Users/sbiner/anaconda3/envs/py38/lib/python3.8/site-packages/xarray/backends/netCDF4_.py", line 64, in setitem data[key] = value File "src/netCDF4/_netCDF4.pyx", line 4933, in netCDF4._netCDF4.Variable.setitem File "<array_function internals>", line 5, in broadcast_to File "/Users/sbiner/anaconda3/envs/py38/lib/python3.8/site-packages/numpy/lib/stride_tricks.py", line 411, in broadcast_to return _broadcast_to(array, shape, subok=subok, readonly=True) File "/Users/sbiner/anaconda3/envs/py38/lib/python3.8/site-packages/numpy/lib/stride_tricks.py", line 348, in _broadcast_to it = np.nditer( ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (1,7) and requested shape (1,1) ``` What you expected to happen: I expect a netcdf file to be written Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.8 (default, Apr 13 2021, 12:59:45) [Clang 10.0.0 ] python-bits: 64 OS: Darwin OS-release: 19.6.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: fr_CA.UTF-8 LANG: fr_CA.UTF-8 LOCALE: fr_CA.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.6.1 xarray: 0.17.0 pandas: 1.2.4 numpy: 1.20.1 scipy: 1.6.2 netCDF4: 1.5.6 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2021.04.0 distributed: 2021.04.0 matplotlib: 3.3.4 cartopy: 0.18.0 seaborn: 0.11.1 numbagg: None pint: None setuptools: 52.0.0.post20210125 pip: 20.3.3 conda: None pytest: None IPython: 7.22.0 sphinx: 4.0.1 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5396/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
363299007 | MDU6SXNzdWUzNjMyOTkwMDc= | 2436 | save "encoding" when using open_mfdataset | sbiner 16655388 | open | 0 | 15 | 2018-09-24T20:02:49Z | 2021-07-28T10:35:42Z | NONE | I like the automatic decoding of the time variable when reading netcdf files but I often need to keep the calendar attribute of the time variable. Could it be possible to keep those attributes in the DataSet/DataArray return by open_dataset? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2436/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
363326726 | MDU6SXNzdWUzNjMzMjY3MjY= | 2437 | xarray potential inconstistencies with cftime | sbiner 16655388 | closed | 0 | 16 | 2018-09-24T21:25:46Z | 2021-06-22T17:01:35Z | 2019-02-08T15:05:38Z | NONE | I am trying to use xarray with different types of calendars. I made a few tests and wonder if somebody can help me make sense of the results. In my test, I generate a DataArray Code Sample, a copy-pastable example if possible```python import xarray as xr import cftime import numpy as np generate data for 365_days calendarunits = 'days since 2000-01-01 00:00' time_365 = cftime.num2date(np.arange(0, 10 * 365), units, '365_day') da = xr.DataArray(np.arange(time_365.size), coords = [time_365], dims = 'time', name = 'data') write dataArray in netcdf and read it in new DataArrayda.to_netcdf('data_365.nc', 'w') da2 = xr.open_dataset('data_365.nc').data try resample datry: mean = da.resample(time='Y').mean() print(mean.values) except TypeError: print('got TypeError for da') try resample da2mean = da2.resample(time = 'Y').mean() print (mean.values) ``` Problem descriptionAs seen in the code the resampledoes not work for I wonder if this makes sense or if it is something that should eventually be corrected. INSTALLED VERSIONS In [6]: print (cftime.version) 1.0.1
------------------
commit: None
python: 3.6.5.final.0
python-bits: 64
OS: Darwin
OS-release: 17.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: fr_CA.UTF-8
LOCALE: fr_CA.UTF-8
xarray: 0.10.8
pandas: 0.23.0
numpy: 1.14.3
scipy: 1.1.0
netCDF4: 1.4.1
h5netcdf: None
h5py: 2.7.1
Nio: None
zarr: None
bottleneck: 1.2.1
cyordereddict: None
dask: 0.17.5
distributed: 1.21.8
matplotlib: 2.2.2
cartopy: None
seaborn: 0.8.1
setuptools: 39.1.0
pip: 10.0.1
conda: 4.5.11
pytest: 3.5.1
IPython: 6.4.0
sphinx: 1.7.4 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2437/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
326553877 | MDU6SXNzdWUzMjY1NTM4Nzc= | 2187 | open_dataset crash with long filenames | sbiner 16655388 | closed | 0 | 2 | 2018-05-25T14:47:31Z | 2018-05-29T14:43:50Z | 2018-05-29T14:42:35Z | NONE | Code Sample```python import xarray as xr import shutil import numpy as np create netcdf filedata = np.random.rand(4, 3) foo = xr.DataArray(data) foo.to_netcdf('test.nc') f_nc = 'a.nc' shutil.copy('test.nc', f_nc) while 1: print '{:05n} characteres'.format(len(f_nc)) ds1 = xr.open_dataset(f_nc) ds1.close() nf_nc = 'a' + f_nc shutil.move(f_nc, nf_nc) f_nc = nf_nc
``` Problem descriptionOn my linux machine (CentOS) this code crashes (memory corrruption) when the filename length hits 32 characters. On my OSX machine it is fine until 255 character and stops with an IOError Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2187/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);