issues
1 row where repo = 13221727 and user = 11867798 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1374911473 | I_kwDOAMm_X85R83vx | 7042 | Xarray returns duplicate Longitude/Latitude values with sel method | rogomichael 11867798 | closed | 1 | 5 | 2022-09-15T18:18:27Z | 2022-09-19T05:56:34Z | 2022-09-19T05:56:34Z | NONE | What is your issue?I am trying to select air temperature from Netcdf file and polgon regions from NUTS3 shape file with the aim of masking both to extract the values. However, for some regions, xarray returns a data frame with the same latitude or longitude values which cannot be masked by geopandas. The shape file and the netcdf I am using are zipped here Here is the code: import os import math import numpy as np import pandas as pd import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature import seaborn as sn import geopandas as gpd import earthpy as et import xarray as xr import regionmask from sultan.api import Sultan Plotting optionssn.set(font_scale=1.3) sn.set_style("white") nc_file = xr.open_mfdataset('year2019.nc') #, chunks = {'time': 10}) shapefile = "NUTS_RG_60M_2021_4326/NUTS_RG_60M_2021_4326.shp" countries = gpd.read_file(shapefile) querry = 3 countries = countries[countries['LEVL_CODE'] == querry]
These values will be passed to xarraygerman_state = countries[countries.NUTS_ID.isin(["DE255"])] german_state.plot() boundaries = german_state.total_bounds print(boundaries) ger_mask = regionmask.mask_3D_geopandas(german_state, nc_file.longitude, nc_file.latitude, method="pygeos") print(ger_mask) state_lat = [float(boundaries[1]), float(boundaries[3])] print("Boundary Latitude", state_lat) state_lon = [float(boundaries[0]), float(boundaries[2])] print(" Boundary Longitude", state_lon) print(state_lat, state_lon)
two_months_255.where(ger_mask) ```python Error: File /opt/homebrew/lib/python3.9/site-packages/xarray/core/indexes.py:449, in PandasIndex.reindex_like(self, other, method, tolerance) 445 def reindex_like( 446 self, other: PandasIndex, method=None, tolerance=None 447 ) -> dict[Hashable, Any]: 448 if not self.index.is_unique: --> 449 raise ValueError( 450 f"cannot reindex or align along dimension {self.dim!r} because the " 451 "(pandas) index has duplicate values" 452 ) 454 return {self.dim: get_indexer_nd(self.index, other.index, method, tolerance)} ValueError: cannot reindex or align along dimension 'latitude' because the (pandas) index has duplicate values ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7042/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);