issues
8 rows where repo = 13221727 and user = 11671536 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
373653203 | MDU6SXNzdWUzNzM2NTMyMDM= | 2508 | groupby fails on generic ndarray functions | d-chambers 11671536 | open | 0 | 4 | 2018-10-24T20:00:22Z | 2020-10-04T16:05:58Z | NONE | This seems related to #326. Code Sample, a copy-pastable example if possible```python import numpy as np import xarray as xr da = xr.DataArray(np.random.randint(0, 1, (10, 10, 3)), dims=['row', 'col', 'time']) da.groupby('time').apply(np.linalg.norm) ``` Problem descriptionI would expect xarary to know how to apply generic numpy functions along specified axis. However, it currently raises the following exception: ```python AttributeError Traceback (most recent call last) <ipython-input-22-5451ed1f09ee> in <module>() ----> 1 da.groupby('time').apply(np.linalg.norm) ~/anaconda3/lib/python3.7/site-packages/xarray/core/groupby.py in apply(self, func, shortcut, kwargs) 514 applied = (maybe_wrap_array(arr, func(arr, kwargs)) 515 for arr in grouped) --> 516 return self._combine(applied, shortcut=shortcut) 517 518 def _combine(self, applied, shortcut=False): ~/anaconda3/lib/python3.7/site-packages/xarray/core/groupby.py in _combine(self, applied, shortcut) 519 """Recombine the applied objects like the original.""" 520 applied_example, applied = peek_at(applied) --> 521 coord, dim, positions = self._infer_concat_args(applied_example) 522 if shortcut: 523 combined = self._concat_shortcut(applied, dim, positions) ~/anaconda3/lib/python3.7/site-packages/xarray/core/groupby.py in _infer_concat_args(self, applied_example) 289 290 def _infer_concat_args(self, applied_example): --> 291 if self._group_dim in applied_example.dims: 292 coord = self._group 293 positions = self._group_indices AttributeError: 'numpy.float64' object has no attribute 'dims' ``` Expected Outputa data array whit a time coordinate of size 3 (ie same shape as Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2508/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
231715344 | MDU6SXNzdWUyMzE3MTUzNDQ= | 1428 | changes made to coords using groupby and apply do not persist | d-chambers 11671536 | open | 0 | 1 | 2017-05-26T19:28:06Z | 2020-03-29T15:28:53Z | NONE | I am running Ubuntu 16 with Xarray 0.9.1 on python 3.6.0. I have found that any changes made to coordinates in a function that is called by a groupby object's apply method do not persist. The following code illustrates the problem: ```python import numpy as np import xarray as xr def change_new_coord(dar): """ change the new_coord coord from 1 to 0 """ dar.coords['new_coord'] = 0 return dar setup data arraydata = np.ones((10, 10, 1000)) time = np.linspace(0, 10, 1000) coords = {'time': time, 'd2': range(10), 'd3': range(10)} dims = ['d2', 'd3', 'time'] dar = xr.DataArray(data, coords=coords, dims=dims) attach coordinate based on d2 and d3dar.coords['new_coord'] = (('d2', 'd3'), np.ones((10, 10))) stackstacked = dar.stack(z=('d2', 'd3')) groupbygr = stacked.groupby('z') applyout = gr.apply(change_new_coord).unstack('z') raises; all values in new_coord should be 0, but they are still 1assert np.all(out.coords['new_coord'] == 0) ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1428/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
231838537 | MDU6SXNzdWUyMzE4Mzg1Mzc= | 1431 | inconsistent behavior in stack/unstack along one dimension | d-chambers 11671536 | closed | 0 | 4 | 2017-05-28T01:07:09Z | 2019-05-22T21:49:13Z | 2019-05-22T21:49:13Z | NONE | I am using Ubuntu 16, python 3.6, and xarray 0.9.1 A DataArray can be stacked along one dimension, but when unstack is called a ValueError is raised. It seems that either unstack should work, or calling stack should also raise a ValueError. ```python import xarray as xr dims = ['a', 'b'] coords = {'a': range(2), 'b':range(2)} values = [[0, 0], [0, 0]] dar = xr.DataArray(values, coords, dims) stacked = dar.stack(z=('a',)) # this works unstack = stacked.unstack('z') # this raises ValueError ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1431/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
231835326 | MDU6SXNzdWUyMzE4MzUzMjY= | 1430 | setting values with getattr performs wrong opperation with multi-dimensional coordinate | d-chambers 11671536 | closed | 0 | 3 | 2017-05-27T23:44:14Z | 2019-04-30T03:17:20Z | 2019-04-30T03:17:20Z | NONE | I am using Ubuntu 16, python 3.6, and xarray 0.9.1 Consider the following code: ```python import xarray as xr import numpy as np dims = ['a', 'b'] coords = {'a': range(2), 'b':range(2), 'group': (('a', 'b'), [[0, 0], [0, 1]])} values = [[0, 0], [0, 0]] dar = xr.DataArray(values, coords, dims) dar[dict(group=0)] = 1 # group is only 0 for three of the four elements expected_values = np.array([[1, 1], [1, 0]]) yet this raises because all four values are set to 1assert np.all(np.isclose(dar.values, expected_values)) ``` I suspect trying to assign values in this way using a multi-dimensional coordinate should raise a ValueError as this does:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1430/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
232726778 | MDU6SXNzdWUyMzI3MjY3Nzg= | 1436 | Wrong dimension referenced in boolean indexing with .loc | d-chambers 11671536 | closed | 0 | 3 | 2017-05-31T23:35:08Z | 2017-10-19T23:54:03Z | 2017-10-19T23:54:03Z | NONE | I am using Ubuntu 16, python 3.6, and xarary 0.9.5. ```python import numpy as np import xarray as xr setup for a simple gridDX = 50 X = np.arange(0, 2010, DX) Y = np.arange(0, 2010, DX) Z = np.arange(0, 2010, DX) grid_shape = (len(X), len(Y), len(Z)) Create data arraydims = 'X Y Z'.split() coords = {'X': X, 'Y': Y, 'Z': Z} dar = xr.DataArray(np.ones(grid_shape), dims=dims, coords=coords) slice the data array so that all Z values are greater than 1000dar2 = dar.loc[dar.Z > 1000] assert np.all(dar2.Z > 1000) # fails becase dar is sliced along X, not Z ``` Since the object returned from dar.Z > 1000 is a data array with "Z" as the only dim I would expect this to slice the "Z" dim rather than X. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1436/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
228872889 | MDU6SXNzdWUyMjg4NzI4ODk= | 1410 | to_netcdf without path argument returns None rather than bytes | d-chambers 11671536 | closed | 0 | 2 | 2017-05-15T23:18:54Z | 2017-09-05T13:50:55Z | 2017-09-05T13:50:55Z | NONE | I am using: Ubuntu 16.04 python 3.6.0 xarray 0.9.1 scipy 0.18.1 The documentation states that if no path argument is passed to the to_netcdf method of the DataArray class it returns a bytes object. However, it returns None.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1410/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
208676242 | MDU6SXNzdWUyMDg2NzYyNDI= | 1276 | DataArray doesnt use bottleneck implementation on rolling variance | d-chambers 11671536 | closed | 0 | 2 | 2017-02-18T22:22:16Z | 2017-03-06T01:32:14Z | 2017-03-06T01:32:14Z | NONE | It appears that the DataArray is not using the bottleneck move_var when calling var on a rolling object but it does for std. I have attached some simple benchmarks to demonstrate. python version 3.6 pandas version 0.19.2 xarray version 0.9.1 bottleneck version 1.2.0 ```python import numpy as np import xarray as xr import bottleneck import pandas as pd data = np.random.rand(10000) xarray setupar = xr.DataArray(data, dims=['time']) xrol = ar.rolling(time=30) pandas setupdf = ar.to_pandas() prol = df.rolling(30) ``` ```python xray std profile%time _ = xrol.std() ```
```python xray var profile%time _ = xrol.var() ```
```python pandas std profile%time _ = prol.std() ```
```python pandas var profile%time _ = prol.var() ```
```python bottleneck std profile%time _ = bottleneck.move_std(data, 30) ```
```python bottleneck var profile%time _ = bottleneck.move_var(data, 30) ```
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1276/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
208582080 | MDExOlB1bGxSZXF1ZXN0MTA2ODI5Njcz | 1275 | fixed simple typo | d-chambers 11671536 | closed | 0 | 1 | 2017-02-17T23:09:37Z | 2017-02-18T03:30:40Z | 2017-02-18T01:40:34Z | NONE | 0 | pydata/xarray/pulls/1275 | fixed a small type in the docs
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1275/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);