issues
6 rows where repo = 13221727 and "updated_at" is on date 2022-05-01 sorted by updated_at descending
This data as json, CSV (advanced)
These facets timed out: state, repo, type
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1222215528 | I_kwDOAMm_X85I2Ydo | 6555 | sortby with ascending=False should create an index | headtr1ck 43316012 | closed | 0 | 4 | 2022-05-01T16:57:51Z | 2022-05-01T22:17:50Z | 2022-05-01T22:17:50Z | COLLABORATOR | Is your feature request related to a problem?When using If an explicit index (like [0, 1, 2]) exists, it gets correctly reordered and allowes correct aligning. Describe the solution you'd likeFor consistency with aligning xarray should create a new index that indicates that the data has been reordered, i.e. [2, 1, 0]. Only downside: this will break code that relies on non-existent indexes. Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6555/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1216982208 | PR_kwDOAMm_X8422vsw | 6522 | Update issue template to include a checklist | max-sixty 5635139 | closed | 0 | 4 | 2022-04-27T08:19:49Z | 2022-05-01T22:14:35Z | 2022-05-01T22:14:32Z | MEMBER | 0 | pydata/xarray/pulls/6522 | This replaces https://github.com/pydata/xarray/pull/5787. Please check out the previews in the most recent comment there |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6522/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
376370028 | MDU6SXNzdWUzNzYzNzAwMjg= | 2534 | to_dataframe() excessive memory usage | guygriffiths 1665346 | closed | 0 | 3 | 2018-11-01T12:20:39Z | 2022-05-01T22:04:51Z | 2022-05-01T22:04:43Z | NONE | Code Sample, a copy-pastable example if possible```python import xarray as xr from glob import glob This refers to a large multi-file NetCDF datasetfile_list = sorted(glob('~/Data///*.nc')) dataset = xr.open_mfdataset(file_list, decode_times=True, autoclose=True, decode_cf=True, cache=False, concat_dim='time') At this point, the total RAM used by the python process is ~1.4GSelect a timeseries at a single pointThis is near instantaneous and uses no additional memoryts = dataset.sel({'lat': 10, 'lon': 10}, method='nearest') Convert that timeseries to a pandas dataframe.This is where the actual data reading happens, and reads the data into memorydf = ts.to_dataframe() At this point, the total RAM used by the python process is ~10.5G``` Problem descriptionDespite the fact that the resulting dataframe only has a single lat/lon point's worth of data, a huge amount of RAM is used. I can get (what appears to be) an identical pandas DataFrame by changing the final line to:
Expected OutputI would expect that Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2534/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
822987300 | MDU6SXNzdWU4MjI5ODczMDA= | 5001 | .min() doesn't work on np.datetime64 with a chunked Dataset | ludwigVonKoopa 49512274 | open | 0 | 2 | 2021-03-05T11:12:19Z | 2022-05-01T16:11:48Z | NONE | Hi all, if a xr.Dataset is chunked, i cannot do ds.time.min(), i get an error : Thanks What happened: raised an What you expected to happen: compute the min & max on a chunked datetime64 xarray.DataArray Minimal Complete Verifiable Example: ```python import xarray as xr import numpy as np obs=200 t0 = np.datetime64("2010-01-01T00:00:00") tn = t0 + np.timedelta64(123*4, "D") ds2 = xr.Dataset( { "time": (["obs"], np.arange(t0, tn, (tn-t0)/obs)), }, coords={ "obs": (["obs"], np.arange(obs)), }, ).chunk({"obs": 100}) ds2.time.min() ``` Anything else we need to know?: ds2.time.mean() works, max & min raise Exception Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.7.9 (default, Aug 31 2020, 12:42:55) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 4.15.0-133-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: fr_FR.UTF-8 LOCALE: fr_FR.UTF-8 libhdf5: 1.12.0 libnetcdf: 4.7.4 xarray: 0.16.2 pandas: 1.2.1 numpy: 1.19.5 scipy: 1.6.0 netCDF4: 1.5.5.1 pydap: None h5netcdf: None h5py: None Nio: None zarr: 2.6.1 cftime: 1.3.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2021.01.1 distributed: 2021.01.1 matplotlib: 3.3.4 cartopy: None seaborn: None numbagg: None pint: 0.16.1 setuptools: 52.0.0.post20210125 pip: 20.3.3 conda: None pytest: 6.2.2 IPython: 7.20.0 sphinx: 3.5.0 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5001/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1221885425 | I_kwDOAMm_X85I1H3x | 6549 | Improved Dataset broadcasting | headtr1ck 43316012 | open | 0 | 3 | 2022-04-30T17:51:37Z | 2022-05-01T14:37:43Z | COLLABORATOR | Is your feature request related to a problem?I am a bit puzzled about how xarrays is broadcasting Datasets. It seems to always add all dimensions to all variables. Is this what you want in general? See this example: ```python import xarray as xr da = xr.DataArray([[1, 2, 3]], dims=("x", "y")) <xarray.DataArray (x: 1, y: 3)>array([[1, 2, 3]])ds = xr.Dataset({"a": ("x", [1]), "b": ("z", [2, 3])}) <xarray.Dataset>Dimensions: (x: 1, z: 2)Dimensions without coordinates: x, zData variables:a (x) int32 1b (z) int32 2 3ds.broadcast_like(da) returns:<xarray.Dataset>Dimensions: (x: 1, y: 3, z: 2)Dimensions without coordinates: x, y, zData variables:a (x, y, z) int32 1 1 1 1 1 1b (x, y, z) int32 2 3 2 3 2 3I think it should return:<xarray.Dataset>Dimensions: (x: 1, y: 3, z: 2)Dimensions without coordinates: x, y, zData variables:a (x, y) int32 1 1 1 # notice here without "z" dimb (x, y, z) int32 2 3 2 3 2 3``` Describe the solution you'd likeI would like broadcasting to behave the same way as e.g. a simple addition.
In the upper example Describe alternatives you've considered
Additional contextMaybe one can add an option to broadcasting that controls this behavior? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6549/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
264321376 | MDU6SXNzdWUyNjQzMjEzNzY= | 1621 | Undesired decoding to timedelta64 (was: units of "seconds" translated to time coordinate) | pacioos 4701070 | open | 0 | 16 | 2017-10-10T17:58:45Z | 2022-05-01T08:49:43Z | NONE | When using open_dataset( ), it is translating data variables with units of "seconds" to time coordinates. For example, measurements of wave period. I don't believe xarray should treat variables as time coordinates unless their units are of "seconds since...". I have noticed that changing my units to "second" or "sec" or "s" prevents xarray from translating the variable to datetime64 and keeps it float64, as desired. More details and an OPeNDAP example posted on github here: https://stackoverflow.com/questions/46552078/xarray-wave-period-in-seconds-ingested-as-timedelta64 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1621/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);