issues
2 rows where repo = 13221727, type = "issue" and user = 6404167 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 327613219 | MDU6SXNzdWUzMjc2MTMyMTk= | 2198 | DataArray.encoding['chunksizes'] not respected in to_netcdf | Karel-van-de-Plassche 6404167 | closed | 0 | 2 | 2018-05-30T07:50:59Z | 2019-06-06T20:35:50Z | 2019-06-06T20:35:50Z | CONTRIBUTOR | This might be just a documentation issue, so sorry if this is not a problem with xarray. I'm trying to save an intermediate result of a calculation with xarray + dask to disk, but I'd like to preserve the on-disk chunking. Setting the encoding of a Dataset.data_var or DataArray using the encoding attribute seems to work for (at least) some encoding variables, but not for ``` python import xarray as xr import dask.array as da from dask.distributed import Client from IPython import embed First generate a file with random numbersrng = da.random.RandomState() shape = (10, 10000) chunks = [10, 10] dims = ['x', 'y'] z = rng.standard_normal(shape, chunks=chunks) da = xr.DataArray(z, dims=dims, name='z') Set encoding of the DataArrayda.encoding['chunksizes'] = chunks # Not conserved da.encoding['zlib'] = True # Conserved ds = da.to_dataset() print(ds['z'].encoding) #out: {'chunksizes': [10, 10], 'zlib': True} This one is chunked and compressed correctlyds.to_netcdf('test1.nc', encoding={'z': {'chunksizes': chunks}}) While this one is only compressedds.to_netcdf('test2.nc') ```
INSTALLED VERSIONS
------------------
commit: None
python: 3.6.5.final.0
python-bits: 64
OS: Linux
OS-release: 4.16.5-1-ARCH
machine: x86_64
processor:
byteorder: little
LC_ALL:
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
xarray: 0.10.4
pandas: 0.22.0
numpy: 1.14.3
scipy: 0.19.0
netCDF4: 1.4.0
h5netcdf: 0.5.1
h5py: 2.7.1
Nio: None
zarr: None
bottleneck: None
cyordereddict: None
dask: 0.17.5
distributed: 1.21.8
matplotlib: 2.0.2
cartopy: None
seaborn: 0.7.1
setuptools: 39.1.0
pip: 9.0.1
conda: None
pytest: 3.2.2
IPython: 6.3.1
sphinx: None
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/2198/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 327064908 | MDU6SXNzdWUzMjcwNjQ5MDg= | 2190 | Parallel non-locked read using dask.Client crashes | Karel-van-de-Plassche 6404167 | closed | 0 | 5 | 2018-05-28T15:42:40Z | 2019-01-14T21:09:04Z | 2019-01-14T21:09:03Z | CONTRIBUTOR | I'm trying to parallelize my code using Dask. Using their ``` python import xarray as xr import dask.array as da from dask.distributed import Client from IPython import embed First generate a file with random numbersrng = da.random.RandomState() shape = (10, 10000) chunks = (10, 10) dims = ['y', 'z'] x = rng.standard_normal(shape, chunks=chunks) da = xr.DataArray(x, dims=dims, name='x') da.to_netcdf('test.nc') Open file without a lockclient = Client(processes=False) ds = xr.open_dataset('test.nc', chunks=dict(zip(dims, chunks)), lock=False) This will crash!print((ds['x'] * ds['x']).compute())
Output of
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/2190/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);