issues
4 rows where repo = 13221727, type = "issue" and user = 44147817 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2163608564 | I_kwDOAMm_X86A9gv0 | 8802 | Error when using `apply_ufunc` with `datetime64` as output dtype | gcaria 44147817 | open | 0 | 4 | 2024-03-01T15:09:57Z | 2024-05-03T12:19:14Z | CONTRIBUTOR | What happened?When using What did you expect to happen?No response Minimal Complete Verifiable Example```Python import xarray as xr import numpy as np def _fn(arr: np.ndarray, time: np.ndarray) -> np.ndarray: return time[:10] def fn(da: xr.DataArray) -> xr.DataArray: dim_out = "time_cp"
da_fake = xr.DataArray(np.random.rand(5,5,5), coords=dict(x=range(5), y=range(5), time=np.array(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04', '2024-01-05'], dtype='datetime64[ns]') )).chunk(dict(x=2,y=2)) fn(da_fake.compute()).compute() # ValueError: Cannot convert from specific units to generic units in NumPy datetimes or timedeltas fn(da_fake).compute() # same errors as above ``` MVCE confirmation
Relevant log output```PythonValueError Traceback (most recent call last) Cell In[211], line 1 ----> 1 fn(da_fake).compute() File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/dataarray.py:1163, in DataArray.compute(self, kwargs) 1144 """Manually trigger loading of this array's data from disk or a 1145 remote source into memory and return a new array. The original is 1146 left unaltered. (...) 1160 dask.compute 1161 """ 1162 new = self.copy(deep=False) -> 1163 return new.load(kwargs) File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/dataarray.py:1137, in DataArray.load(self, kwargs) 1119 def load(self, kwargs) -> Self: 1120 """Manually trigger loading of this array's data from disk or a 1121 remote source into memory and return this array. 1122 (...) 1135 dask.compute 1136 """ -> 1137 ds = self._to_temp_dataset().load(**kwargs) 1138 new = self._from_temp_dataset(ds) 1139 self._variable = new._variable File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/dataset.py:853, in Dataset.load(self, kwargs) 850 chunkmanager = get_chunked_array_type(lazy_data.values()) 852 # evaluate all the chunked arrays simultaneously --> 853 evaluated_data = chunkmanager.compute(lazy_data.values(), kwargs) 855 for k, data in zip(lazy_data, evaluated_data): 856 self.variables[k].data = data File /srv/conda/envs/notebook/lib/python3.10/site-packages/xarray/core/daskmanager.py:70, in DaskManager.compute(self, data, kwargs) 67 def compute(self, data: DaskArray, kwargs) -> tuple[np.ndarray, ...]: 68 from dask.array import compute ---> 70 return compute(*data, kwargs) File /srv/conda/envs/notebook/lib/python3.10/site-packages/dask/base.py:628, in compute(traverse, optimize_graph, scheduler, get, args, kwargs) 625 postcomputes.append(x.dask_postcompute()) 627 with shorten_traceback(): --> 628 results = schedule(dsk, keys, kwargs) 630 return repack([f(r, a) for r, (f, a) in zip(results, postcomputes)]) File /srv/conda/envs/notebook/lib/python3.10/site-packages/numpy/lib/function_base.py:2372, in vectorize.call(self, args, kwargs) 2369 self._init_stage_2(args, kwargs) 2370 return self -> 2372 return self._call_as_normal(*args, kwargs) File /srv/conda/envs/notebook/lib/python3.10/site-packages/numpy/lib/function_base.py:2365, in vectorize._call_as_normal(self, args, *kwargs) 2362 vargs = [args[_i] for _i in inds] 2363 vargs.extend([kwargs[_n] for _n in names]) -> 2365 return self._vectorize_call(func=func, args=vargs) File /srv/conda/envs/notebook/lib/python3.10/site-packages/numpy/lib/function_base.py:2446, in vectorize._vectorize_call(self, func, args)
2444 """Vectorized call to File /srv/conda/envs/notebook/lib/python3.10/site-packages/numpy/lib/function_base.py:2506, in vectorize._vectorize_call_with_signature(self, func, args) 2502 outputs = _create_arrays(broadcast_shape, dim_sizes, 2503 output_core_dims, otypes, results) 2505 for output, result in zip(outputs, results): -> 2506 output[index] = result 2508 if outputs is None: 2509 # did not call the function even once 2510 if otypes is None: ValueError: Cannot convert from specific units to generic units in NumPy datetimes or timedeltas ``` Anything else we need to know?No response Environment |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8802/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1517575123 | I_kwDOAMm_X85adFvT | 7409 | Implement `DataArray.to_dask_dataframe()` | gcaria 44147817 | closed | 0 | 4 | 2023-01-03T15:44:11Z | 2023-04-28T15:09:31Z | 2023-04-28T15:09:31Z | CONTRIBUTOR | Is your feature request related to a problem?It'd be nice to pass from a chunked DataArray to a dask object directly Describe the solution you'd likeI think something along these lines should work (although a less convoluted way might exist): ```python import dask.dataframe as dkd import xarray as xr def to_dask(da: xr.DataArray) -> Union[dkd.Series, dkd.DataFrame]:
``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7409/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1143489702 | I_kwDOAMm_X85EKESm | 6288 | `Dataset.to_zarr()` does not preserve CRS information | gcaria 44147817 | closed | 0 | 6 | 2022-02-18T17:51:02Z | 2022-08-29T23:40:44Z | 2022-03-21T05:19:48Z | CONTRIBUTOR | What happened?When writing a DataArray with CRS information to zarr, after converting it to a Dataset, the CRS is not readable from the zarr file. What did you expect to happen?To be able to retrieve the CRS information from the zarr file. Minimal Complete Verifiable Example```python da = xr.DataArray(np.arange(9).reshape(3,3), coords={'x':range(3), 'y':range(3)} ) da = da.rio.write_crs(4326) da.to_dataset(name='var').to_zarr('var.zarr') xr.open_zarr('var.zarr')['var'].rio.crs == None # returns True ``` Anything else we need to know?I'd be happy to have a look at this if it is indeed a bug. EnvironmentINSTALLED VERSIONScommit: None python: 3.9.0 (default, Jan 17 2022, 21:57:22) [GCC 9.3.0] python-bits: 64 OS: Linux OS-release: 5.11.0-1028-aws machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: C.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.12.1 libnetcdf: None xarray: 0.20.1 pandas: 1.3.4 numpy: 1.21.4 scipy: 1.7.3 netCDF4: None pydap: None h5netcdf: None h5py: 3.6.0 Nio: None zarr: 2.11.0 cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: 1.2.10 cfgrib: None iris: None bottleneck: None dask: 2022.01.0 distributed: 2022.01.0 matplotlib: 3.5.1 cartopy: None seaborn: None numbagg: None fsspec: 2021.11.1 cupy: None pint: None sparse: None setuptools: 60.2.0 pip: 21.3.1 conda: None pytest: 6.2.5 IPython: 8.0.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6288/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1178365524 | I_kwDOAMm_X85GPG5U | 6405 | Docstring of `open_zarr` fails to mention that `decode_coords` could be a string too | gcaria 44147817 | open | 0 | 0 | 2022-03-23T16:30:11Z | 2022-03-23T16:49:14Z | CONTRIBUTOR | What is your issue?The docstring of |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6405/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);