issues
3 rows where repo = 13221727, state = "open" and user = 8699967 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1227144046 | I_kwDOAMm_X85JJLtu | 6577 | ENH: list_engines function | snowman2 8699967 | open | 0 | 4 | 2022-05-05T20:27:14Z | 2023-01-13T17:30:14Z | CONTRIBUTOR | Is your feature request related to a problem?It can be difficult to know what engines are available and where they come from. This could help with that. Describe the solution you'd like
rasterio | Open geospatial files (GeoTiff) | https://corteva.github.io/rioxarray ``` Describe alternatives you've consideredNo response Additional contextNo response |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/6577/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | issue | ||||||||
| 894780870 | MDExOlB1bGxSZXF1ZXN0NjQ3MDk0NjA5 | 5335 | ENH: Preserve attrs in to_dataframe() | snowman2 8699967 | open | 0 | 1 | 2021-05-18T21:00:20Z | 2022-06-09T14:50:16Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5335 |
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/5335/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull | ||||||
| 893714363 | MDU6SXNzdWU4OTM3MTQzNjM= | 5327 | ENH: Preserve attrs when converting to pandas dataframe | snowman2 8699967 | open | 0 | 0 | 2021-05-17T21:06:26Z | 2021-05-17T21:06:26Z | CONTRIBUTOR | Is your feature request related to a problem? Please describe. ```python import xarray xds = xarray.DataArray([1], name="a", dims="a", attrs={"long_name": "Description about data"})
Additional context Things to be wary about is that it the pandas documentation says the |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/5327/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);