home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

1 row where repo = 13221727, state = "open" and user = 8161792 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

type 1

  • issue 1

state 1

  • open · 1 ✖

repo 1

  • xarray · 1 ✖
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
656982083 MDU6SXNzdWU2NTY5ODIwODM= 4224 wrong time encoding after padding xzenggit 8161792 open 0     3 2020-07-15T00:46:53Z 2022-04-29T17:39:17Z   NONE      

What happened:

If I open a netcdf with default settings (contain a daily time dimension) and then pad with hourly values, even the padded dataset shows hourly time values, the hourly values cannot be saved. I think this is due to the encoding, but I'm not sure how to fix it.

What you expected to happen: I expected the final line of code give me ```python

array(['2000-01-01T00:00:00.000000000', '2000-01-01T01:00:00.000000000',

'2000-01-01T02:00:00.000000000', '2000-01-01T03:00:00.000000000',

'2000-01-01T04:00:00.000000000'], dtype='datetime64[ns]')

Instead, it outputspython

array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000',

'2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000',

'2000-01-01T00:00:00.000000000'], dtype='datetime64[ns]')

```

Minimal Complete Verifiable Example:

```python import xarray as xr

time = pd.date_range("2000-01-01", freq="1D", periods=365 ) ds = xr.Dataset({"foo": ("time", np.arange(365)), "time": time}) ds.to_netcdf('test5.nc')

ds = xr.open_dataset('test5.nc') ds.time.encoding

padding

ds_hourly = ds.resample(time='1h').pad() ds_hourly.time.values[0:5]

array(['2000-01-01T00:00:00.000000000', '2000-01-01T01:00:00.000000000',

'2000-01-01T02:00:00.000000000', '2000-01-01T03:00:00.000000000',

'2000-01-01T04:00:00.000000000'], dtype='datetime64[ns]')

ds_hourly.to_netcdf('test6.nc')

load the padded data file

ds_hourly_load = xr.open_dataset('test6.nc') ds_hourly_load.time.values[0:5]

array(['2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000',

'2000-01-01T00:00:00.000000000', '2000-01-01T00:00:00.000000000',

'2000-01-01T00:00:00.000000000'], dtype='datetime64[ns]')

```

Anything else we need to know?:

Environment: xarray version: '0.15.1'

Output of <tt>xr.show_versions()</tt>
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4224/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 951.241ms · About: xarray-datasette