issues
2 rows where repo = 13221727, state = "open" and user = 10050469 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
256496917 | MDU6SXNzdWUyNTY0OTY5MTc= | 1565 | Regression: time attributes on PeriodIndex | fmaussion 10050469 | open | 0 | 12 | 2017-09-10T09:27:09Z | 2021-07-20T18:33:29Z | MEMBER | The following used to work with xarray 0.9.5 but doesn't anymore with 0.9.6 or master:
```KeyError Traceback (most recent call last) ~/.pyvirtualenvs/py3/lib/python3.5/site-packages/xarray/core/dataarray.py in _getitem_coord(self, key) 458 try: --> 459 var = self._coords[key] 460 except KeyError: KeyError: 'time.month' During handling of the above exception, another exception occurred: AttributeError Traceback (most recent call last) <ipython-input-1-41829b924596> in <module>() 4 time = pd.period_range('2000-01', '2000-12', freq='M') 5 da = xr.DataArray(np.arange(12), dims=['time'], coords={'time':time}) ----> 6 da['time.month'] ~/.pyvirtualenvs/py3/lib/python3.5/site-packages/xarray/core/dataarray.py in getitem(self, key) 467 def getitem(self, key): 468 if isinstance(key, basestring): --> 469 return self._getitem_coord(key) 470 else: 471 # orthogonal array indexing ~/.pyvirtualenvs/py3/lib/python3.5/site-packages/xarray/core/dataarray.py in getitem_coord(self, key) 461 dim_sizes = dict(zip(self.dims, self.shape)) 462 , key, var = _get_virtual_variable( --> 463 self._coords, key, self._level_coords, dim_sizes) 464 465 return self._replace_maybe_drop_dims(var, name=key) ~/.pyvirtualenvs/py3/lib/python3.5/site-packages/xarray/core/dataset.py in _get_virtual_variable(variables, key, level_vars, dim_sizes) 82 data = getattr(ref_var.dt, var_name).data 83 else: ---> 84 data = getattr(ref_var, var_name).data 85 virtual_var = Variable(ref_var.dims, data) 86 AttributeError: 'IndexVariable' object has no attribute 'month' ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1565/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
184456540 | MDU6SXNzdWUxODQ0NTY1NDA= | 1056 | groupby_bins along two dims simultaneously | fmaussion 10050469 | open | 0 | 3 | 2016-10-21T10:50:06Z | 2020-10-04T05:06:37Z | MEMBER | I probably missed it, but what is the way to apply groupby (or rather groupby_bins) in order to achieve the following in xarray? ``` python da = xr.DataArray(np.arange(16).reshape((4, 4))) da <xarray.DataArray (dim_0: 4, dim_1: 4)> array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Coordinates: * dim_0 (dim_0) int64 0 1 2 3 * dim_1 (dim_1) int64 0 1 2 3 should be aggregated to (in case of summing) to obtaindagg <xarray.DataArray (dim_0: 2, dim_1: 2)> array([[10, 18], [42, 50]]) Coordinates: * dim_1 (dim_1) int64 0 2 * dim_0 (dim_0) int64 0 2 ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1056/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);