issues
2 rows where repo = 13221727, state = "closed" and user = 4502 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1732874789 | I_kwDOAMm_X85nSZIl | 7885 | drop_indexes is reversed by assign_coords of unrelated coord | mjwillson 4502 | closed | 0 | 2 | 2023-05-30T19:35:48Z | 2023-08-29T14:23:31Z | 2023-08-29T14:23:31Z | NONE | What happened?I dropped an index on one coord, then later called assign_coords to change another unrelated coord. I expected the index on the original coord to stay dropped. What did you expect to happen?The index was silently created again. Minimal Complete Verifiable Example
MVCE confirmation
Relevant log outputNo response Anything else we need to know?In general it would be nice if xarray made it easier to avoid indexes being automatically created. E.g. right now, as far as I can tell there's no way to avoid an index being created when you construct a DataArray or Dataset with a coordinate of the same name as a dimension. Admittedly I have a slightly niche use case -- I'm using xarray with wrapped JAX arrays, which can't be converted into pandas indexes. Indexes being (re-)created in these cases isn't just an inconvenience it actually causes a crash. Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.9 (main, Dec 7 2022, 13:47:07) [GCC 12.2.0]
python-bits: 64
OS: Linux
OS-release: 6.1.20-2rodete1-amd64
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.10.8
libnetcdf: 4.9.0
xarray: 999
pandas: 1.5.3
numpy: 1.24.2
scipy: 1.10.0
netCDF4: 1.6.2
pydap: None
h5netcdf: 1.1.0
h5py: 3.7.0
Nio: None
zarr: 2.13.6+ds
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.3.4
cfgrib: 0.9.10.3
iris: None
bottleneck: 1.3.5
dask: None
distributed: None
matplotlib: 3.6.3
cartopy: None
seaborn: None
numbagg: None
fsspec: 2022.11.0
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.6.3
pip3: None
conda: None
pytest: 7.2.1
mypy: None
IPython: 8.5.0
sphinx: 5.3.0
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7885/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1188262115 | I_kwDOAMm_X85G03Dj | 6429 | FacetGrid padding goes very bad when cartopy projection specified | mjwillson 4502 | closed | 0 | 2 | 2022-03-31T15:26:26Z | 2023-04-28T13:06:14Z | 2023-04-28T13:06:14Z | NONE | What happened?When doing a faceted plot and specifying a projection (via e.g.
whereas if you change What did you expect to happen?I expected a layout closer to what you get if you comment out Minimal Complete Verifiable Example```Python import xarray import cartopy.crs as ccrs import numpy as np data = xarray.DataArray( dims=('lat', 'lon', 'row', 'col'), data=np.ones((180, 360, 2, 2)), coords={'lon': np.arange(360), 'lat': np.arange(-90, 90)} ) xarray.plot.pcolormesh( data, row='row', col='col', size=5, aspect=1.5, subplot_kws=dict(projection=ccrs.PlateCarree()), ) ``` Relevant log outputIn the case where the layout isn't (as) broken, I see a warning:
It seems that when tight_layout does manage to get applied, things really go wrong. Perhaps at a minimum we could have a way to disable tight_layout? (which currently seems to be mandatory) Anything else we need to know?No response EnvironmentINSTALLED VERSIONScommit: None python: 3.7.10 (stable, redacted, redacted) [Clang google3-trunk (e5b1b9edb8b6f6cd926c2ba3e1ad1b6f767021d6)] python-bits: 64 OS: Linux OS-release: 4.15.0-smp-920.39.0.0 machine: x86_64 processor: byteorder: little LC_ALL: en_US.UTF-8 LANG: None LOCALE: ('en_US', 'UTF-8') libhdf5: 1.12.1 libnetcdf: 4.6.1 xarray: 0.18.2 pandas: 1.1.5 numpy: 1.21.5 scipy: 1.2.1 netCDF4: 1.4.1 pydap: None h5netcdf: 0.11.0 h5py: 3.2.1 Nio: None zarr: 2.7.0 cftime: 1.0.0 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.3.4 cartopy: 0+unknown seaborn: 0.11.1 numbagg: None pint: None setuptools: unknown pip: None conda: None pytest: None IPython: 3.2.3 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6429/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);