home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

5 rows where repo = 13221727, state = "closed" and user = 2002703 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: comments, closed_at, created_at (date), updated_at (date), closed_at (date)

type 2

  • issue 4
  • pull 1

state 1

  • closed · 5 ✖

repo 1

  • xarray · 5 ✖
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
103380276 MDU6SXNzdWUxMDMzODAyNzY= 552 Dataset.to_dataframe() loses datetime64 timezone localization IamJeffG 2002703 closed 0     2 2015-08-26T22:34:11Z 2015-08-29T14:11:46Z 2015-08-29T14:11:46Z CONTRIBUTOR      

Not sure if feature or bug, but definitely made me look twice.

```

ds = xray.Dataset({'time': (['time'], [np.datetime64('2014-04-26T05:00:00-0700')])}) ds.time.values[0] numpy.datetime64('2014-04-26T05:00:00.000000000-0700')

ds.to_dataframe().index[0] Timestamp('2014-04-26 12:00:00') ```

I'd expected to see the DataFrame index maintaining its local timezone info:

Timestamp('2014-04-26 05:00:00-0700', tz='America/Los_Angeles')

That said, the UTC that I actually get back is the same time so math should still work. I'm opening this issue mostly as a matter for discussion -- feel free to close if you think xray should be pushing users towards UTC.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/552/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
58307190 MDExOlB1bGxSZXF1ZXN0Mjk2NzEzMjg= 327 Cleanly apply generic ndarrays to DataArray.groupby IamJeffG 2002703 closed 0   0.4 799013 1 2015-02-20T03:47:15Z 2015-02-20T04:41:10Z 2015-02-20T04:41:08Z CONTRIBUTOR   0 pydata/xarray/pulls/327

This is special cased for np.ndarrays: applying to DataArrays is not only inefficient but would also be wrong if the applied function wanted to change metadata.

Fixes #326

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/327/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
58288666 MDU6SXNzdWU1ODI4ODY2Ng== 326 DataArray.groupby.apply with a generic ndarray function IamJeffG 2002703 closed 0   0.5 987654 1 2015-02-19T23:37:34Z 2015-02-20T04:41:08Z 2015-02-20T04:41:08Z CONTRIBUTOR      

Need to apply a transformation function across one dimension of a DataArray, where that non-xray function speaks in ndarrays. Currently the only ways to do this involve wrapping the function. An example:

``` import numpy as np import xray from scipy.ndimage.morphology import binary_opening

da = xray.DataArray(np.random.random_integers(0, 1, (10, 10, 3)), dims=['row', 'col', 'time'])

I want to apply an operation the 2D image at each point in time

da.groupby('time').apply(binary_opening)

AttributeError: 'numpy.ndarray' object has no attribute 'dims'

def wrap_binary_opening(da, kwargs): return xray.DataArray(binary_opening(da.values, kwargs), da.coords)

da.groupby('time').apply(wrap_binary_opening) da.groupby('time').apply(wrap_binary_opening, iterations=2) # func may take custom args ```

My proposed solution is that apply would automatically coerce func's return value to a DataArray.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/326/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
51046413 MDU6SXNzdWU1MTA0NjQxMw== 284 to_netcdf ValueError with 0d string variable IamJeffG 2002703 closed 0     1 2014-12-04T23:59:07Z 2014-12-05T03:57:16Z 2014-12-05T03:57:16Z CONTRIBUTOR      

xray.Dataset( {'password': ([], 'abcd')} ).to_netcdf('/tmp/bar.nc')

results in

``` ----> 1 xray.Dataset( {'password': ([], 'abcd')} ).to_netcdf('/tmp/bar.nc')

/export/data/envs/popcorn/lib/python2.7/site-packages/xray/core/dataset.pyc in to_netcdf(self, filepath, kwdargs) 801 """ 802 with backends.NetCDF4DataStore(filepath, mode='w', kwdargs) as store: --> 803 self.dump_to_store(store) 804 805 dump = to_netcdf

/export/data/envs/popcorn/lib/python2.7/site-packages/xray/core/dataset.pyc in dump_to_store(self, store, encoder) 793 if encoder: 794 variables, attributes = encoder(variables, attributes) --> 795 store.store(variables, attributes) 796 store.sync() 797

/export/data/envs/popcorn/lib/python2.7/site-packages/xray/backends/netCDF4_.pyc in store(self, variables, attributes) 100 # to write times, for example, would fail. 101 cf_variables, cf_attrs = cf_encoder(variables, attributes) --> 102 AbstractWritableDataStore.store(self, cf_variables, cf_attrs) 103 104 def open_store_variable(self, var):

/export/data/envs/popcorn/lib/python2.7/site-packages/xray/backends/common.pyc in store(self, variables, attributes) 153 variables = dict((k, v) for k, v in iteritems(variables) 154 if not (k in neccesary_dims and is_trivial_index(v))) --> 155 self.set_variables(variables) 156 157 def set_dimensions(self, dimensions):

/export/data/envs/popcorn/lib/python2.7/site-packages/xray/backends/common.pyc in set_variables(self, variables) 165 def set_variables(self, variables): 166 for vn, v in iteritems(variables): --> 167 self.set_variable(_encode_variable_name(vn), v) 168 self.set_necessary_dimensions(v) 169

/export/data/envs/popcorn/lib/python2.7/site-packages/xray/backends/netCDF4_.pyc in set_variable(self, name, variable) 151 attrs = variable.attrs.copy() 152 if self.format == 'NETCDF4': --> 153 variable, datatype = _nc4_values_and_dtype(variable) 154 else: 155 variable = encode_nc3_variable(variable)

/export/data/envs/popcorn/lib/python2.7/site-packages/xray/backends/netCDF4_.pyc in _nc4_values_and_dtype(var) 47 # use character arrays instead of unicode, because unicode suppot in 48 # netCDF4 is still rather buggy ---> 49 data, dims = maybe_convert_to_char_array(var.values, var.dims) 50 var = Variable(dims, data, var.attrs, var.encoding) 51 dtype = var.dtype

/export/data/envs/popcorn/lib/python2.7/site-packages/xray/backends/netcdf3.pyc in maybe_convert_to_char_array(data, dims) 55 def maybe_convert_to_char_array(data, dims): 56 if data.dtype.kind == 'S' and data.dtype.itemsize > 1: ---> 57 data = conventions.string_to_char(data) 58 dims = dims + ('string%s' % data.shape[-1],) 59 return data, dims

/export/data/envs/popcorn/lib/python2.7/site-packages/xray/conventions.pyc in string_to_char(arr) 344 if kind not in ['U', 'S']: 345 raise ValueError('argument must be a string') --> 346 return arr.view(kind + '1').reshape(*[arr.shape + (-1,)]) 347 348

ValueError: new type not compatible with array. ```

Note this does not fail when the 0d value is a number. This succeeds:

xray.Dataset( {'password': ([], 1)} ).to_netcdf('/tmp/bar.nc')

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/284/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
40536963 MDU6SXNzdWU0MDUzNjk2Mw== 217 Strings are truncated when concatenating Datasets. IamJeffG 2002703 closed 0   0.3 740776 0 2014-08-18T21:58:36Z 2014-08-21T05:17:28Z 2014-08-21T05:17:28Z CONTRIBUTOR      

When concatenating Datasets, a variable's string length is limited to the length in the first of the Datasets being concatenated.

```

import xray first = xray.Dataset({'animal': ('animal', ['horse'])}) second = xray.Dataset( {'animal': ('animal', ['aardvark_0'])}) xray.Dataset.concat([first, second], dimension='animal')['animal'] <xray.DataArray 'animal' (animal: 2)> array(['horse', 'aardv'], dtype='|S5') Coordinates: animal: Index([u'horse', u'aardv'], dtype='object') Attributes: Empty ```

(Note the |S5 dtype and the truncated aardv)

I think this is the offending line: https://github.com/xray/xray/blob/master/xray/core/variable.py#L623 May want to use dtype=object for strings to avoid this issue.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/217/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 82.637ms · About: xarray-datasette