issues
5 rows where repo = 13221727, state = "closed" and user = 1610850 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
365367839 | MDExOlB1bGxSZXF1ZXN0MjE5MzAzNTk0 | 2449 | Add 'to_iris' and 'from_iris' to methods Dataset | jacobtomlinson 1610850 | closed | 0 | 7 | 2018-10-01T09:02:26Z | 2023-09-18T09:33:53Z | 2023-09-18T09:33:53Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/2449 | This PR adds
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2449/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
658374300 | MDExOlB1bGxSZXF1ZXN0NDUwMzQ1MDgy | 4232 | Support cupy in as_shared_dtype | jacobtomlinson 1610850 | closed | 0 | 1 | 2020-07-16T16:52:30Z | 2020-07-27T10:32:48Z | 2020-07-24T20:38:58Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4232 | This implements solution 2 for #4231. cc @quasiben
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4232/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
658361860 | MDU6SXNzdWU2NTgzNjE4NjA= | 4231 | as_shared_dtype coerces scalars into numpy regardless of other array types | jacobtomlinson 1610850 | closed | 0 | 0 | 2020-07-16T16:36:19Z | 2020-07-24T20:38:57Z | 2020-07-24T20:38:57Z | CONTRIBUTOR | Related to #4212 When trying to get the Calculating Seasonal Averages from Timeseries of Monthly Means example from the documentation to work with I dug through this with @quasiben and it seems to be related to the What happened: Running the MCVE below results in However Cupy is then passed this numpy array to it's where function which does raises the exception. What you expected to happen: The Therefore a few things could be done here: 1. Xarray could not convert the int/float to a numpy array 1. It could convert it to a cupy array 1. Cupy could be modified to accept a numpy scalar. We thew together a quick fix for option 2, which I'll put in a draft PR. But happy to discuss the alternatives. Minimal Complete Verifiable Example: ```python import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt import cupy as cp Load datads = xr.tutorial.open_dataset("rasm").load() Move data to GPUds.Tair.data = cp.asarray(ds.Tair.data) ds_unweighted = ds.groupby("time.season").mean("time") Calculate the weights by grouping by 'time.season'.month_length = ds.time.dt.days_in_month weights = ( month_length.groupby("time.season") / month_length.groupby("time.season").sum() ) Test that the sum of the weights for each season is 1.0np.testing.assert_allclose(weights.groupby("time.season").sum().values, np.ones(4)) Move weights to GPUweights.data = cp.asarray(weights.data) Calculate the weighted averageds_weighted = ds * weights ds_weighted = ds_weighted.groupby("time.season") ds_weighted = ds_weighted.sum(dim="time") ``` Traceback```python-traceback Traceback (most recent call last): File "/home/jacob/miniconda3/envs/dask/lib/python3.7/runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "/home/jacob/miniconda3/envs/dask/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/jacob/.vscode-server/extensions/ms-python.python-2020.6.91350/pythonFiles/lib/python/debugpy/__main__.py", line 45, in <module> cli.main() File "/home/jacob/.vscode-server/extensions/ms-python.python-2020.6.91350/pythonFiles/lib/python/debugpy/../debugpy/server/cli.py", line 430, in main run() File "/home/jacob/.vscode-server/extensions/ms-python.python-2020.6.91350/pythonFiles/lib/python/debugpy/../debugpy/server/cli.py", line 267, in run_file runpy.run_path(options.target, run_name=compat.force_str("__main__")) File "/home/jacob/miniconda3/envs/dask/lib/python3.7/runpy.py", line 263, in run_path pkg_name=pkg_name, script_name=fname) File "/home/jacob/miniconda3/envs/dask/lib/python3.7/runpy.py", line 96, in _run_module_code mod_name, mod_spec, pkg_name, script_name) File "/home/jacob/miniconda3/envs/dask/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/jacob/Projects/pydata/xarray/test_seasonal_averages.py", line 32, in <module> ds_weighted = ds_weighted.sum(dim="time") File "/home/jacob/Projects/pydata/xarray/xarray/core/common.py", line 84, in wrapped_func func, dim, skipna=skipna, numeric_only=numeric_only, **kwargs File "/home/jacob/Projects/pydata/xarray/xarray/core/groupby.py", line 994, in reduce return self.map(reduce_dataset) File "/home/jacob/Projects/pydata/xarray/xarray/core/groupby.py", line 923, in map return self._combine(applied) File "/home/jacob/Projects/pydata/xarray/xarray/core/groupby.py", line 943, in _combine applied_example, applied = peek_at(applied) File "/home/jacob/Projects/pydata/xarray/xarray/core/utils.py", line 183, in peek_at peek = next(gen) File "/home/jacob/Projects/pydata/xarray/xarray/core/groupby.py", line 922, in <genexpr> applied = (func(ds, *args, **kwargs) for ds in self._iter_grouped()) File "/home/jacob/Projects/pydata/xarray/xarray/core/groupby.py", line 990, in reduce_dataset return ds.reduce(func, dim, keep_attrs, **kwargs) File "/home/jacob/Projects/pydata/xarray/xarray/core/dataset.py", line 4313, in reduce **kwargs, File "/home/jacob/Projects/pydata/xarray/xarray/core/variable.py", line 1591, in reduce data = func(input_data, axis=axis, **kwargs) File "/home/jacob/Projects/pydata/xarray/xarray/core/duck_array_ops.py", line 324, in f return func(values, axis=axis, **kwargs) File "/home/jacob/Projects/pydata/xarray/xarray/core/nanops.py", line 111, in nansum a, mask = _replace_nan(a, 0) File "/home/jacob/Projects/pydata/xarray/xarray/core/nanops.py", line 21, in _replace_nan return where_method(val, mask, a), mask File "/home/jacob/Projects/pydata/xarray/xarray/core/duck_array_ops.py", line 274, in where_method return where(cond, data, other) File "/home/jacob/Projects/pydata/xarray/xarray/core/duck_array_ops.py", line 268, in where return _where(condition, *as_shared_dtype([x, y])) File "/home/jacob/Projects/pydata/xarray/xarray/core/duck_array_ops.py", line 56, in f return wrapped(*args, **kwargs) File "<__array_function__ internals>", line 6, in where File "cupy/core/core.pyx", line 1343, in cupy.core.core.ndarray.__array_function__ File "/home/jacob/miniconda3/envs/dask/lib/python3.7/site-packages/cupy/sorting/search.py", line 211, in where return _where_ufunc(condition.astype('?'), x, y) File "cupy/core/_kernel.pyx", line 906, in cupy.core._kernel.ufunc.__call__ File "cupy/core/_kernel.pyx", line 90, in cupy.core._kernel._preprocess_args TypeError: Unsupported type <class 'numpy.ndarray'> ```Anything else we need to know?: Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: 52043bc57f20438e8923790bca90b646c82442ad python: 3.7.6 | packaged by conda-forge | (default, Jun 1 2020, 18:57:50) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 5.3.0-62-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 libhdf5: None libnetcdf: None xarray: 0.15.1 pandas: 0.25.3 numpy: 1.18.5 scipy: 1.5.0 netCDF4: None pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.2.0 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: 0.9.8.3 iris: None bottleneck: None dask: 2.20.0 distributed: 2.20.0 matplotlib: 3.2.2 cartopy: 0.17.0 seaborn: 0.10.1 numbagg: None pint: None setuptools: 49.1.0.post20200704 pip: 20.1.1 conda: None pytest: 5.4.3 IPython: 7.16.1 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4231/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
654678508 | MDExOlB1bGxSZXF1ZXN0NDQ3MzU2ODAw | 4214 | Add initial cupy tests | jacobtomlinson 1610850 | closed | 0 | 8 | 2020-07-10T10:20:33Z | 2020-07-13T16:32:35Z | 2020-07-13T15:07:45Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4214 | Added some initial unit tests for cupy. Mainly to create a place for cupy tests to go and to check some basic functionality. I've created a fixture which constructs the dataset from the Toy weather data example and converts the underlying arrays to cupy. Then I've added a test which checks that after calling operations such as The main penalty with working on GPUs is accidentally shunting data back and forth between the GPU and system memory. Copying data over the PCI bus is slow compared to the rest of the work so should be avoided. So this first test is checking that we are leaving things on the GPU. Because this data copying is so expensive cupy have intentionally broken the
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4214/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
346525275 | MDU6SXNzdWUzNDY1MjUyNzU= | 2335 | Spurious "Zarr requires uniform chunk sizes excpet for final chunk." | jacobtomlinson 1610850 | closed | 0 | 3 | 2018-08-01T09:43:06Z | 2018-08-14T17:15:02Z | 2018-08-14T17:15:01Z | CONTRIBUTOR | Problem descriptionUsing xarray 0.10.7 I'm getting the following error when trying to write out a zarr.
Those chunks look fine to me, only one has an inconsistent chunking and it's the final chunk in the second index. Seems related to #2225. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2335/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);