issues
8 rows where repo = 13221727, state = "closed" and "updated_at" is on date 2021-02-16 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: user, comments, updated_at, closed_at, author_association, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
771198437 | MDExOlB1bGxSZXF1ZXN0NTQyNzk3NDYy | 4711 | Adding vectorized indexing docs | EricKeenan 44210245 | closed | 0 | 3 | 2020-12-18T22:10:49Z | 2021-02-16T23:37:30Z | 2021-02-16T23:37:30Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4711 |
4630: Adds a new vectorized indexing example to
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4711/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
564555854 | MDU6SXNzdWU1NjQ1NTU4NTQ= | 3768 | Pointwise indexing | ivirshup 8238804 | closed | 0 | 6 | 2020-02-13T09:39:27Z | 2021-02-16T23:37:29Z | 2021-02-16T23:37:29Z | NONE | MCVE Code Sample```python import xarray as xr import numpy as np da = xr.DataArray( np.arange(56).reshape((7, 8)), coords={ 'x': list('abcdefg'), 'y': 10 * np.arange(8) }, dims=['x', 'y'] ) Shouldn't this be (2,)?assert da.isel(x=[0, 1], y=[0, 1]).shape == (2, 2) ``` Expected OutputI had expected Problem DescriptionGoing off this example in #507:
and the deprecation of This was made a little bit more confusing by the documentation for setting values by index. In particular the example: ```python In [68]: da[ind_x, ind_y] = -2 # assign -2 to (ix, iy) = (0, 0) and (1, 1) In [69]: da Out[69]: <xarray.DataArray (x: 3, y: 4)> array([[-2, -2, -1, -1], [-2, -2, 6, 7], [ 8, 9, 10, 11]]) ``` To me, the comment All in all, I'm not sure if this is a bug, or an issue with documentation. If Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3768/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
753874419 | MDU6SXNzdWU3NTM4NzQ0MTk= | 4630 | .sel(...., method='nearest') fails for large requests. | EricKeenan 44210245 | closed | 0 | 8 | 2020-11-30T23:20:18Z | 2021-02-16T23:37:29Z | 2021-02-16T23:37:29Z | CONTRIBUTOR | A common usage of ``` import xarray as xr import numpy as np ds = xr.tutorial.open_dataset("air_temperature") Define taget latitude and longitudetgt_lat = np.linspace(0, 100, num=10) tgt_lon = np.linspace(0, 100, num=10) Retrieve data at target latitude and longitudetgt_data = ds['air'].sel(lon=tgt_lon, lat=tgt_lat, method='nearest') ``` My problem is that I am trying subset Is there a way to only retrieve the diagonal elements? If not, is this something that should be added? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4630/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
788398518 | MDExOlB1bGxSZXF1ZXN0NTU2OTE3MDIx | 4823 | Allow fsspec URLs in open_(mf)dataset | martindurant 6042212 | closed | 0 | 20 | 2021-01-18T16:22:35Z | 2021-02-16T21:26:53Z | 2021-02-16T21:18:05Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4823 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4823/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
603309899 | MDU6SXNzdWU2MDMzMDk4OTk= | 3985 | xarray=1.15.1 regression: Groupby drop multi-index | DancingQuanta 8419157 | closed | 0 | 4 | 2020-04-20T15:05:51Z | 2021-02-16T15:59:46Z | 2021-02-16T15:59:46Z | NONE | I have written a function MCVE Code Sample```python import xarray as xr DimensionsN = xr.DataArray(np.arange(100), dims='N', name='N') reps = xr.DataArray(np.arange(5), dims='reps', name='reps') horizon = xr.DataArray([1, -1], dims='horizon', name='horizon') horizon.attrs = {'long_name': 'Horizonal', 'units': 'H'} vertical = xr.DataArray(np.arange(1, 4), dims='vertical', name='vertical') vertical.attrs = {'long_name': 'Vertical', 'units': 'V'} Variablesx = xr.DataArray(np.random.randn(len(N), len(reps), len(horizon), len(vertical)), dims=['N', 'reps', 'horizon', 'vertical'], name='x') y = x * 0.1 y.name = 'y' Merge x, ydata = xr.merge([x, y]) Assign coordsdata = data.assign_coords(reps=reps, vertical=vertical, horizon=horizon) Function that stack all but one diensions and groupby over the stacked dimension.def process_stacked_groupby(ds, dim, func, *args):
Function to apply on groupbydef fn(ds): return ds Run groupby with applied functiondata.pipe(process_stacked_groupby, 'N', fn) ``` Expected OutputPrior to xarray=0.15.0, the above code produce a result that I wanted. The function should be able to 1. stack chosen dimensions 2. groupby the stacked dimension 3. apply a function on each group a. The function actually passes along another function with unstacked group coord b. Add multi-index stacked group coord back to the results of this function 4. combine the groups 5. Unstack stacked dimension Problem DescriptionAfter upgrading to 0.15.1, the above code stopped working.
The error occurred at the line
Versions0.15.1 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3985/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
709187212 | MDExOlB1bGxSZXF1ZXN0NDkzMjkyOTIw | 4461 | Allow fsspec/zarr/mfdataset | martindurant 6042212 | closed | 0 | 18 | 2020-09-25T18:14:38Z | 2021-02-16T15:36:54Z | 2021-02-16T15:36:54Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4461 | Requires https://github.com/zarr-developers/zarr-python/pull/606
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4461/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
496809167 | MDU6SXNzdWU0OTY4MDkxNjc= | 3332 | Memory usage of `da.rolling().construct` | fjanoos 923438 | closed | 0 | 5 | 2019-09-22T17:35:06Z | 2021-02-16T15:00:37Z | 2021-02-16T15:00:37Z | NONE | If I were to do |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3332/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
748229907 | MDU6SXNzdWU3NDgyMjk5MDc= | 4598 | Calling pd.to_datetime on cftime variable | raybellwaves 17162724 | closed | 0 | 4 | 2020-11-22T12:14:27Z | 2021-02-16T02:42:35Z | 2021-02-16T02:42:35Z | CONTRIBUTOR | It would be nice to be able to convert cftime variables to pandas datetime to utilize the functionality there. I understand this is an upstream issue as pandas probably isn't aware of cftime. However, i'm curious if a method could be added to cftime such as .to_dataframe(). I've found ``` import xarray as xr import numpy as np import pandas as pd date_str = '2020-01-01' date_np = np.datetime64(date_str)
date_cf = xr.cftime_range(start=date_str, periods=1)[0] pd.to_datetime(date_cf)
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4598/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);