home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

8 rows where milestone = 3008859 and repo = 13221727 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: user, comments, closed_at, author_association, created_at (date), updated_at (date), closed_at (date)

type 2

  • issue 5
  • pull 3

state 1

  • closed 8

repo 1

  • xarray · 8 ✖
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
281423161 MDExOlB1bGxSZXF1ZXN0MTU3ODU2NTEx 1776 [WIP] Fix pydap array wrapper fujiisoup 6815844 closed 0   0.10.3 3008859 6 2017-12-12T15:22:07Z 2019-09-25T15:44:19Z 2018-01-09T01:48:13Z MEMBER   0 pydata/xarray/pulls/1776
  • [x] Closes #1775 (remove if there is no corresponding issue, which should only be the case for minor changes)
  • [x] Tests added (for all bug fixes or enhancements)
  • [x] Tests passed (for all non-documentation changes)
  • [x] Passes git diff upstream/master **/*py | flake8 --diff (remove if you did not edit any Python files)
  • [x] Fully documented, including whats-new.rst for all changes and api.rst for new API (remove if this change should not be visible to users, e.g., if it is an internal clean-up, or if this is part of a larger project that will be documented later)

I am trying to fix #1775, but tests are still failing. Any help would be appreciated.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1776/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
307224717 MDU6SXNzdWUzMDcyMjQ3MTc= 2002 Unexpected decoded time in xarray >= 0.10.1 JanisGailis 9655353 closed 0   0.10.3 3008859 8 2018-03-21T12:28:54Z 2018-03-31T01:16:14Z 2018-03-31T01:16:14Z NONE      

Problem description

Given the original time dimension: python ds = xr.open_mfdataset("C:\\Users\\janis\\.cate\\data_stores\\local\\local.SST_should_fail\\*.nc", decode_cf=False) <xarray.DataArray 'time' (time: 32)> array([788961600, 789048000, 789134400, 789220800, 789307200, 789393600, 789480000, 789566400, 789652800, 789739200, 789825600, 789912000, 789998400, 790084800, 790171200, 790257600, 790344000, 790430400, 790516800, 790603200, 790689600, 790776000, 790862400, 790948800, 791035200, 791121600, 791208000, 791294400, 791380800, 791467200, 791553600, 791640000], dtype=int64) Coordinates: * time (time) int64 788961600 789048000 789134400 789220800 789307200 ... Attributes: standard_name: time axis: T comment: bounds: time_bnds long_name: reference time of sst file _ChunkSizes: 1 units: seconds since 1981-01-01 calendar: gregorian Produces this decoded time dimension with xarray >= 0.10.1: python ds = xr.open_mfdataset("C:\\Users\\janis\\.cate\\data_stores\\local\\local.SST_should_fail\\*.nc", decode_cf=True) <xarray.DataArray 'time' (time: 32)> array(['1981-01-01T00:00:00.627867648', '1980-12-31T23:59:58.770774016', '1981-01-01T00:00:01.208647680', '1980-12-31T23:59:59.351554048', '1981-01-01T00:00:01.789427712', '1980-12-31T23:59:59.932334080', '1980-12-31T23:59:58.075240448', '1981-01-01T00:00:00.513114112', '1980-12-31T23:59:58.656020480', '1981-01-01T00:00:01.093894144', '1980-12-31T23:59:59.236800512', '1981-01-01T00:00:01.674674176', '1980-12-31T23:59:59.817580544', '1980-12-31T23:59:57.960486912', '1981-01-01T00:00:00.398360576', '1980-12-31T23:59:58.541266944', '1981-01-01T00:00:00.979140608', '1980-12-31T23:59:59.122046976', '1981-01-01T00:00:01.559920640', '1980-12-31T23:59:59.702827008', '1981-01-01T00:00:02.140700672', '1981-01-01T00:00:00.283607040', '1980-12-31T23:59:58.426513408', '1981-01-01T00:00:00.864387072', '1980-12-31T23:59:59.007293440', '1981-01-01T00:00:01.445167104', '1980-12-31T23:59:59.588073472', '1981-01-01T00:00:02.025947136', '1981-01-01T00:00:00.168853504', '1980-12-31T23:59:58.311759872', '1981-01-01T00:00:00.749633536', '1980-12-31T23:59:58.892539904'], dtype='datetime64[ns]') Coordinates: * time (time) datetime64[ns] 1981-01-01T00:00:00.627867648 ... Attributes: standard_name: time axis: T comment: bounds: time_bnds long_name: reference time of sst file _ChunkSizes: 1

Expected Output

With xarray == 0.10.0 the output is as expected: python ds = xr.open_mfdataset("C:\\Users\\janis\\.cate\\data_stores\\local\\local.SST_should_fail\\*.nc", decode_cf=True) <xarray.DataArray 'time' (time: 32)> array(['2006-01-01T12:00:00.000000000', '2006-01-02T12:00:00.000000000', '2006-01-03T12:00:00.000000000', '2006-01-04T12:00:00.000000000', '2006-01-05T12:00:00.000000000', '2006-01-06T12:00:00.000000000', '2006-01-07T12:00:00.000000000', '2006-01-08T12:00:00.000000000', '2006-01-09T12:00:00.000000000', '2006-01-10T12:00:00.000000000', '2006-01-11T12:00:00.000000000', '2006-01-12T12:00:00.000000000', '2006-01-13T12:00:00.000000000', '2006-01-14T12:00:00.000000000', '2006-01-15T12:00:00.000000000', '2006-01-16T12:00:00.000000000', '2006-01-17T12:00:00.000000000', '2006-01-18T12:00:00.000000000', '2006-01-19T12:00:00.000000000', '2006-01-20T12:00:00.000000000', '2006-01-21T12:00:00.000000000', '2006-01-22T12:00:00.000000000', '2006-01-23T12:00:00.000000000', '2006-01-24T12:00:00.000000000', '2006-01-25T12:00:00.000000000', '2006-01-26T12:00:00.000000000', '2006-01-27T12:00:00.000000000', '2006-01-28T12:00:00.000000000', '2006-01-29T12:00:00.000000000', '2006-01-30T12:00:00.000000000', '2006-01-31T12:00:00.000000000', '2006-02-01T12:00:00.000000000'], dtype='datetime64[ns]') Coordinates: * time (time) datetime64[ns] 2006-01-01T12:00:00 2006-01-02T12:00:00 ... Attributes: standard_name: time axis: T comment: bounds: time_bnds long_name: reference time of sst file _ChunkSizes: 1

Output of xr.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.4.final.0 python-bits: 32 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 69 Stepping 1, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None xarray: 0.10.1 pandas: 0.22.0 numpy: 1.14.2 scipy: 0.19.1 netCDF4: 1.3.1 h5netcdf: 0.5.0 h5py: 2.7.1 Nio: None zarr: None bottleneck: 1.2.1 cyordereddict: None dask: 0.17.1 distributed: 1.21.3 matplotlib: 2.2.2 cartopy: 0.16.0 seaborn: None setuptools: 39.0.1 pip: 9.0.2 conda: None pytest: 3.1.3 IPython: 6.2.1 sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/2002/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
283388962 MDExOlB1bGxSZXF1ZXN0MTU5Mjg2OTk0 1793 fix distributed writes jhamman 2443309 closed 0   0.10.3 3008859 35 2017-12-19T22:24:41Z 2018-03-13T15:32:54Z 2018-03-10T15:43:18Z MEMBER   0 pydata/xarray/pulls/1793
  • [x] Closes #1464
  • [x] Tests added
  • [x] Tests passed
  • [x] Passes git diff upstream/master **/*py | flake8 --diff
  • [x] Fully documented, including whats-new.rst for all changes and api.rst for new API

Right now, I've just modified the dask distributed integration tests so we can all see the failing tests.

I'm happy to push this further but I thought I'd see if either @shoyer or @mrocklin have an idea where to start?

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1793/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
287852184 MDU6SXNzdWUyODc4NTIxODQ= 1821 v0.10.1 Release jhamman 2443309 closed 0   0.10.3 3008859 11 2018-01-11T16:56:08Z 2018-02-26T23:20:45Z 2018-02-26T01:48:32Z MEMBER      

We're close to a minor/bug-fix release (0.10.1). What do we need to get done before that can happen?

  • [x] #1800 Performance improvements to Zarr (@jhamman)
  • [ ] #1793 Fix for to_netcdf writes with dask-distributed (@jhamman, could use help)
  • [x] #1819 Normalisation for RGB imshow

Help wanted / bugs that no-one is working on: - [ ] #1792 Comparison to masked numpy arrays - [ ] #1764 groupby_bins fails for empty bins

What else?

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1821/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
295744504 MDU6SXNzdWUyOTU3NDQ1MDQ= 1898 zarr RTD docs broken rabernat 1197350 closed 0   0.10.3 3008859 1 2018-02-09T03:35:05Z 2018-02-15T23:20:31Z 2018-02-15T23:20:31Z MEMBER      

This is what is getting rendered on RTD http://xarray.pydata.org/en/latest/io.html#zarr

``` In [26]: ds = xr.Dataset({'foo': (('x', 'y'), np.random.rand(4, 5))}, ....: coords={'x': [10, 20, 30, 40], ....: 'y': pd.date_range('2000-01-01', periods=5), ....: 'z': ('x', list('abcd'))}) ....:

In [27]: ds.to_zarr('path/to/directory.zarr')

AttributeError Traceback (most recent call last) <ipython-input-27-8c5f1b00edbc> in <module>() ----> 1 ds.to_zarr('path/to/directory.zarr')

/home/docs/checkouts/readthedocs.org/user_builds/xray/conda/latest/lib/python3.5/site-packages/xarray-0.10.0+dev55.g1d32399-py3.5.egg/xarray/core/dataset.py in to_zarr(self, store, mode, synchronizer, group, encoding) 1165 from ..backends.api import to_zarr 1166 return to_zarr(self, store=store, mode=mode, synchronizer=synchronizer, -> 1167 group=group, encoding=encoding) 1168 1169 def unicode(self):

/home/docs/checkouts/readthedocs.org/user_builds/xray/conda/latest/lib/python3.5/site-packages/xarray-0.10.0+dev55.g1d32399-py3.5.egg/xarray/backends/api.py in to_zarr(dataset, store, mode, synchronizer, group, encoding) 752 # I think zarr stores should always be sync'd immediately 753 # TODO: figure out how to properly handle unlimited_dims --> 754 dataset.dump_to_store(store, sync=True, encoding=encoding) 755 return store

/home/docs/checkouts/readthedocs.org/user_builds/xray/conda/latest/lib/python3.5/site-packages/xarray-0.10.0+dev55.g1d32399-py3.5.egg/xarray/core/dataset.py in dump_to_store(self, store, encoder, sync, encoding, unlimited_dims) 1068 1069 store.store(variables, attrs, check_encoding, -> 1070 unlimited_dims=unlimited_dims) 1071 if sync: 1072 store.sync()

/home/docs/checkouts/readthedocs.org/user_builds/xray/conda/latest/lib/python3.5/site-packages/xarray-0.10.0+dev55.g1d32399-py3.5.egg/xarray/backends/zarr.py in store(self, variables, attributes, args, kwargs) 378 def store(self, variables, attributes, args, kwargs): 379 AbstractWritableDataStore.store(self, variables, attributes, --> 380 *args, kwargs) 381 382

/home/docs/checkouts/readthedocs.org/user_builds/xray/conda/latest/lib/python3.5/site-packages/xarray-0.10.0+dev55.g1d32399-py3.5.egg/xarray/backends/common.py in store(self, variables, attributes, check_encoding_set, unlimited_dims) 275 variables, attributes = self.encode(variables, attributes) 276 --> 277 self.set_attributes(attributes) 278 self.set_dimensions(variables, unlimited_dims=unlimited_dims) 279 self.set_variables(variables, check_encoding_set,

/home/docs/checkouts/readthedocs.org/user_builds/xray/conda/latest/lib/python3.5/site-packages/xarray-0.10.0+dev55.g1d32399-py3.5.egg/xarray/backends/zarr.py in set_attributes(self, attributes) 341 342 def set_attributes(self, attributes): --> 343 self.ds.attrs.put(attributes) 344 345 def encode_variable(self, variable):

AttributeError: 'Attributes' object has no attribute 'put' ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1898/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
284607311 MDExOlB1bGxSZXF1ZXN0MTYwMTY1NjI3 1800 WIP: Performance improvements for zarr backend jhamman 2443309 closed 0   0.10.3 3008859 6 2017-12-26T20:37:45Z 2018-01-24T14:56:57Z 2018-01-24T14:55:52Z MEMBER   0 pydata/xarray/pulls/1800
  • [x] Closes #https://github.com/pangeo-data/pangeo/issues/48
  • [x] Tests added (for all bug fixes or enhancements)
  • [x] Tests passed (for all non-documentation changes)
  • [x] Passes git diff upstream/master **/*py | flake8 --diff (remove if you did not edit any Python files)
  • [x] Fully documented, including whats-new.rst for all changes and api.rst for new API (remove if this change should not be visible to users, e.g., if it is an internal clean-up, or if this is part of a larger project that will be documented later)

This is building on top of #1799. Based on the suggestion from @alimanfoo in https://github.com/pangeo-data/pangeo/issues/48#issuecomment-353807691, I have reworked the handling of attributes in the zarr backend. There is more to do here, particularly in the set_dimensions arena but this is giving almost a 2x speedup in writing to GCP.

cc @rabernat, @mrocklin and @alimanfoo

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1800/reactions",
    "total_count": 1,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 1,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
282061228 MDU6SXNzdWUyODIwNjEyMjg= 1781 UnboundLocalError when opening netCDF file stefanomattia 16152387 closed 0   0.10.3 3008859 1 2017-12-14T11:01:23Z 2018-01-11T16:53:09Z 2018-01-11T16:53:09Z NONE      

Code Sample, a copy-pastable example if possible

```python import xarray as xr import netCDF4 as nc product = '/Users/stefano/src/s5p/products/NO2/'\ 'S5P_OFFL_L2__NO2____20171107T195219_20171107T213349_00361_01_001107_20171108T122727.nc'

opening the product with netCDF4 works fine

no2 = nc.Dataset(product) no2.groups

correctly shows groups' content

OrderedDict([('PRODUCT', <class 'netCDF4._netCDF4.Group'> group /PRODUCT: dimensions(sizes): scanline(5640), ground_pixel(450), corner(4), time(1), polynomial_exponents(6), layer(34), vertices(2) variables(dimensions): int32 scanline(scanline), int32 ground_pixel(ground_pixel), int32 time(time), int32 corner(corner), int32 polynomial_exponents(polynomial_exponents), int32 layer(layer), int32 vertices(vertices), float32 latitude(time,scanline,ground_pixel), float32 longitude(time,scanline,ground_pixel), int32 delta_time(time,scanline), <class 'str'> time_utc(time,scanline), uint8 qa_value(time,scanline,ground_pixel), float32 nitrogendioxide_tropospheric_column(time,scanline,ground_pixel), float32 nitrogendioxide_tropospheric_column_precision(time,scanline,ground_pixel), float32 averaging_kernel(time,scanline,ground_pixel,layer), float32 air_mass_factor_troposphere(time,scanline,ground_pixel), float32 air_mass_factor_total(time,scanline,ground_pixel), int32 tm5_tropopause_layer_index(time,scanline,ground_pixel), float32 tm5_constant_a(layer,vertices), float32 tm5_constant_b(layer,vertices) groups: SUPPORT_DATA), ('METADATA', <class 'netCDF4._netCDF4.Group'> group /METADATA: dimensions(sizes): variables(dimensions): groups: QA_STATISTICS, ALGORITHM_SETTINGS, GRANULE_DESCRIPTION, ISO_METADATA, EOP_METADATA, ESA_METADATA)])

opening the product with xarray raises an UnboundLocalError exception

no2 = xr.open_dataset(product, group='/PRODUCT') ```

```

UnboundLocalError Traceback (most recent call last) <ipython-input-26-2052b95f2d95> in <module>() ----> 1 no2 = xr.open_dataset(product, group='/PRODUCT')

/Users/stefano/anaconda/lib/python3.6/site-packages/xarray/backends/api.py in open_dataset(filename_or_obj, group, decode_cf, mask_and_scale, decode_times, autoclose, concat_characters, decode_coords, engine, chunks, lock, cache, drop_variables) 303 lock = _default_lock(filename_or_obj, engine) 304 with close_on_error(store): --> 305 return maybe_decode_store(store, lock) 306 else: 307 if engine is not None and engine != 'scipy':

/Users/stefano/anaconda/lib/python3.6/site-packages/xarray/backends/api.py in maybe_decode_store(store, lock) 223 store, mask_and_scale=mask_and_scale, decode_times=decode_times, 224 concat_characters=concat_characters, decode_coords=decode_coords, --> 225 drop_variables=drop_variables) 226 227 _protect_dataset_variables_inplace(ds, cache)

/Users/stefano/anaconda/lib/python3.6/site-packages/xarray/conventions.py in decode_cf(obj, concat_characters, mask_and_scale, decode_times, decode_coords, drop_variables) 1153 vars, attrs, coord_names = decode_cf_variables( 1154 vars, attrs, concat_characters, mask_and_scale, decode_times, -> 1155 decode_coords, drop_variables=drop_variables) 1156 ds = Dataset(vars, attrs=attrs) 1157 ds = ds.set_coords(coord_names.union(extra_coords).intersection(vars))

/Users/stefano/anaconda/lib/python3.6/site-packages/xarray/conventions.py in decode_cf_variables(variables, attributes, concat_characters, mask_and_scale, decode_times, decode_coords, drop_variables) 1086 k, v, concat_characters=concat_characters, 1087 mask_and_scale=mask_and_scale, decode_times=decode_times, -> 1088 stack_char_dim=stack_char_dim) 1089 if decode_coords: 1090 var_attrs = new_vars[k].attrs

/Users/stefano/anaconda/lib/python3.6/site-packages/xarray/conventions.py in decode_cf_variable(name, var, concat_characters, mask_and_scale, decode_times, decode_endianness, stack_char_dim) 998 if (has_fill or scale_factor is not None or add_offset is not None): 999 if has_fill and np.array(fill_value).dtype.kind in ['U', 'S', 'O']: -> 1000 if string_encoding is not None: 1001 raise NotImplementedError( 1002 'variable %r has a _FillValue specified, but '

UnboundLocalError: local variable 'string_encoding' referenced before assignment python

Opening another group with xarray works fine

no2 = xr.open_dataset(product, group='/METADATA/QA_STATISTICS') no2 <xarray.Dataset> Dimensions: (nitrogendioxide_stratospheric_column_histogram_axis: 100, nitrogendioxide_stratospheric_column_pdf_axis: 400, nitrogendioxide_total_column_histogram_axis: 100, nitrogendioxide_total_column_pdf_axis: 400, nitrogendioxide_tropospheric_column_histogram_axis: 100, nitrogendioxide_tropospheric_column_pdf_axis: 400, vertices: 2) [...] ```

Problem description

An UnboundLocalError exception is raised while trying to open a netCDF file on a specific group ('/PRODUCT'). Opening the file within another group works fine. The same file can be correctly opened with the netCDF4 library.

Expected Output

File correctly loaded.

Output of xr.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.1.final.0 python-bits: 64 OS: Darwin OS-release: 17.2.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: None LOCALE: None.None xarray: 0.10.0 pandas: 0.20.1 numpy: 1.12.1 scipy: 0.19.0 netCDF4: 1.2.4 h5netcdf: 0.5.0 Nio: None bottleneck: 1.2.1 cyordereddict: None dask: 0.15.3 matplotlib: 2.1.0 cartopy: 0.15.1 seaborn: 0.8.1 setuptools: 27.2.0 pip: 9.0.1 conda: 4.3.29 pytest: 3.0.7 IPython: 5.3.0 sphinx: 1.5.6
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1781/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
281020451 MDU6SXNzdWUyODEwMjA0NTE= 1775 AttributeError: 'PydapArrayWrapper' object has no attribute 'shape' kuchaale 6815953 closed 0   0.10.3 3008859 3 2017-12-11T13:41:20Z 2018-01-09T01:48:13Z 2018-01-09T01:48:13Z NONE      

Code Sample, a copy-pastable example if possible

See my code here

Problem description

I received AttributeError: 'PydapArrayWrapper' object has no attribute 'shape' when I tried to open PydapDataStore. However, everything works when I use pydap instead of xarray.

Expected Output

xarray.Dataset object

Output of xr.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.5.2.final.0 python-bits: 64 OS: Linux OS-release: 4.10.0-38-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 xarray: 0.10.0 pandas: 0.21.0 numpy: 1.13.3 scipy: 1.0.0 netCDF4: 1.3.1 h5netcdf: None Nio: None bottleneck: 1.2.1 cyordereddict: None dask: 0.15.4 matplotlib: 2.1.0 cartopy: 0.15.1 seaborn: 0.8.1 setuptools: 36.6.0 pip: 9.0.1 conda: None pytest: None IPython: 6.2.1 sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1775/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 76.125ms · About: xarray-datasette