home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

10 rows where milestone = 1172685 and repo = 13221727 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: user, comments, closed_at, author_association, body, created_at (date), updated_at (date), closed_at (date)

type 2

  • pull 8
  • issue 2

state 1

  • closed 10

repo 1

  • xarray · 10 ✖
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
89268800 MDU6SXNzdWU4OTI2ODgwMA== 438 `xray.open_mfdataset` concatenates also variables without time dimension j08lue 3404817 closed 0   0.5.2 1172685 13 2015-06-18T11:34:53Z 2017-09-19T16:16:58Z 2015-07-15T21:47:11Z CONTRIBUTOR      

When opening a multi-file dataset with xray.open_mfdataset, also some variables are concatenated that do not have a time dimension.

My netCDF files contain a lot of those "static" variables (e.g. grid spacing etc.). netCDF4.MFDataset used to handle those as expected (i.e. did not concatenate them).

Is the different behaviour of xray.open_mfdataset intentional or due to a bug?

Note: I am using decode_times=False.

Example

python with xray.open_dataset(files[0], decode_times=False) as single: print single['dz']

<xray.DataArray 'dz' (z_t: 60)> array([ 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1000. , 1019.68078613, 1056.44836426, 1105.99511719, 1167.80700684, 1242.41333008, 1330.96777344, 1435.14099121, 1557.12585449, 1699.67956543, 1866.21240234, 2060.90234375, 2288.85205078, 2556.24707031, 2870.57495117, 3240.8371582 , 3677.77246094, 4194.03076172, 4804.22363281, 5524.75439453, 6373.19189453, 7366.94482422, 8520.89257812, 9843.65820312, 11332.46582031, 12967.19921875, 14705.34375 , 16480.70898438, 18209.13476562, 19802.234375 , 21185.95703125, 22316.50976562, 23186.49414062, 23819.44921875, 24257.21679688, 24546.77929688, 24731.01367188, 24844.328125 , 24911.97460938, 24951.29101562, 24973.59375 , 24985.9609375 , 24992.67382812, 24996.24414062, 24998.109375 ]) Coordinates: * z_t (z_t) float32 500.0 1500.0 2500.0 3500.0 4500.0 5500.0 6500.0 ... Attributes: long_name: thickness of layer k units: centimeters

python with xray.open_mfdataset(files, decode_times=False) as multiple: print multiple['dz']

<xray.DataArray 'dz' (time: 12, z_t: 60)> dask.array<concatenate-1156, shape=(12, 60), chunks=((1, 1, 1, ..., 1, 1), (60,)), dtype=float64> Coordinates: * z_t (z_t) float32 500.0 1500.0 2500.0 3500.0 4500.0 5500.0 6500.0 ... * time (time) float64 3.653e+04 3.656e+04 3.659e+04 3.662e+04 ... Attributes: long_name: thickness of layer k units: centimeters

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/438/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
95532383 MDExOlB1bGxSZXF1ZXN0NDAxNzcyNjQ= 478 Xray v0.5.2 updates shoyer 1217238 closed 0   0.5.2 1172685 0 2015-07-16T21:19:14Z 2015-07-16T21:40:23Z 2015-07-16T21:40:22Z MEMBER   0 pydata/xarray/pulls/478

Fixes #444

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/478/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
95306928 MDExOlB1bGxSZXF1ZXN0NDAwNzgzNjQ= 477 Bytes attributes are decoded to strings with engine='h5netcdf' shoyer 1217238 closed 0   0.5.2 1172685 0 2015-07-15T22:49:03Z 2015-07-16T18:11:42Z 2015-07-16T18:11:42Z MEMBER   0 pydata/xarray/pulls/477

Fixes #451

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/477/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
95089244 MDExOlB1bGxSZXF1ZXN0Mzk5ODMwNzY= 473 Rewrite of xray.concat shoyer 1217238 closed 0   0.5.2 1172685 0 2015-07-15T02:33:40Z 2015-07-15T21:47:14Z 2015-07-15T21:47:11Z MEMBER   0 pydata/xarray/pulls/473

Fixes #464 Fixes #438

The optional arguments concat_over and mode in xray.concat have been removed and replaced by data_vars and coords. The new arguments are both more easily understood and more robustly implemented.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/473/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
95011790 MDExOlB1bGxSZXF1ZXN0Mzk5NDg2MzA= 472 Add support for reading/writing complex numbers with h5netcdf shoyer 1217238 closed 0   0.5.2 1172685 0 2015-07-14T18:48:03Z 2015-07-14T20:24:06Z 2015-07-14T20:24:04Z MEMBER   0 pydata/xarray/pulls/472
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/472/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
92528846 MDExOlB1bGxSZXF1ZXN0MzkwNDI4ODc= 450 Add xray.save_mfdataset shoyer 1217238 closed 0   0.5.2 1172685 0 2015-07-02T02:19:41Z 2015-07-06T18:41:27Z 2015-07-06T18:41:25Z MEMBER   0 pydata/xarray/pulls/450

This function allows for saving multiple datasets to disk simultaneously, which is useful when processing large datasets with dask.array. For example, to save a dataset too big to fit into memory to one file per year, we could write:

```

years, datasets = zip(*ds.groupby('time.year')) paths = ['%s.nc' % y for y in years] xray.save_mfdataset(datasets, paths) ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/450/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
93151446 MDExOlB1bGxSZXF1ZXN0MzkyMjc5MDg= 454 Fixed bug in serializing datetime scalars shoyer 1217238 closed 0   0.5.2 1172685 0 2015-07-05T22:18:07Z 2015-07-06T04:56:53Z 2015-07-06T04:56:52Z MEMBER   0 pydata/xarray/pulls/454
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/454/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
93151483 MDExOlB1bGxSZXF1ZXN0MzkyMjc5MTI= 455 Fix min/max for arrays with string or unicode types shoyer 1217238 closed 0   0.5.2 1172685 0 2015-07-05T22:18:31Z 2015-07-06T04:56:22Z 2015-07-06T04:56:20Z MEMBER   0 pydata/xarray/pulls/455

Fixes #453

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/455/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
91547750 MDExOlB1bGxSZXF1ZXN0Mzg3MTk1MTI= 446 Preprocess argument for open_mfdataset and threading lock shoyer 1217238 closed 0   0.5.2 1172685 4 2015-06-28T03:33:19Z 2015-07-02T17:16:41Z 2015-06-29T18:06:54Z MEMBER   0 pydata/xarray/pulls/446

Fixes #443 Fixes #444

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/446/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
89180768 MDU6SXNzdWU4OTE4MDc2OA== 437 bit of code missing in documentation (http://xray.readthedocs.org/en/latest/io.html#combining-multiple-files) nicolasfauchereau 2539828 closed 0   0.5.2 1172685 1 2015-06-18T02:34:08Z 2015-06-22T15:44:59Z 2015-06-22T15:44:59Z NONE      

in http://xray.readthedocs.org/en/latest/io.html#combining-multiple-files there is a bit of code missing in the function read_netcdfs: instead of:

``` def read_netcdfs(files, dim, transform_func=None): def process_one_path(path): # use a context manager, to ensure the file gets closed after use with xray.open_dataset(path) as ds: # transform_func should do some sort of selection or # aggregation if transform_func is not None: ds = transform_func(ds) # load all data from the transformed dataset, to ensure we can # use it after closing each original file ds.load() return ds

paths = sorted(glob(files))
datasets = [process_one_path(p) for p in paths]
xray.concat(datasets, dim)

```

it should be:

``` def read_netcdfs(files, dim, transform_func=None): def process_one_path(path): # use a context manager, to ensure the file gets closed after use with xray.open_dataset(path) as ds: # transform_func should do some sort of selection or # aggregation if transform_func is not None: ds = transform_func(ds) # load all data from the transformed dataset, to ensure we can # use it after closing each original file ds.load() return ds

paths = sorted(glob(files))
datasets = [process_one_path(p) for p in paths]
dset = xray.concat(datasets, dim)
return dset

```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/437/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 31.756ms · About: xarray-datasette