home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

5 rows where milestone = 1143506 and type = "pull" sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 1

  • pull · 5 ✖

state 1

  • closed 5

repo 1

  • xarray 5
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
88339814 MDExOlB1bGxSZXF1ZXN0Mzc2NjMwMDc= 434 One less copy when reading big-endian data with engine='scipy' shoyer 1217238 closed 0   0.5.1 1143506 0 2015-06-15T06:59:55Z 2015-06-15T07:51:44Z 2015-06-15T07:51:41Z MEMBER   0 pydata/xarray/pulls/434
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/434/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
88240870 MDExOlB1bGxSZXF1ZXN0Mzc2NDc1NDQ= 433 Assign order shoyer 1217238 closed 0   0.5.1 1143506 0 2015-06-14T20:09:04Z 2015-06-15T01:16:45Z 2015-06-15T01:16:31Z MEMBER   0 pydata/xarray/pulls/433

xray.Dataset.assign and xray.Dataset.assign_coords now assign new variables in sorted (alphabetical) order, mirroring the behavior in pandas. Previously, the order was arbitrary.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/433/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
87025092 MDExOlB1bGxSZXF1ZXN0MzczNzY5Njk= 429 Add pipe method copied from pandas shoyer 1217238 closed 0   0.5.1 1143506 0 2015-06-10T16:19:52Z 2015-06-11T16:45:57Z 2015-06-11T16:45:56Z MEMBER   0 pydata/xarray/pulls/429

The implementation here is directly copied from pandas: https://github.com/pydata/pandas/pull/10253

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/429/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
85692656 MDExOlB1bGxSZXF1ZXN0MzcwODQ0MjM= 427 Fix concat for identical index variables shoyer 1217238 closed 0   0.5.1 1143506 0 2015-06-06T04:05:10Z 2015-06-07T06:03:23Z 2015-06-07T06:03:16Z MEMBER   0 pydata/xarray/pulls/427

Fixes #425

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/427/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
85670978 MDExOlB1bGxSZXF1ZXN0MzcwODIzNjk= 426 Decode non-native endianness shoyer 1217238 closed 0   0.5.1 1143506 0 2015-06-06T01:31:14Z 2015-06-06T03:51:14Z 2015-06-06T03:51:13Z MEMBER   0 pydata/xarray/pulls/426

Fixes #416

By the way, it turns out the simple work around for this was to install netCDF4 -- only scipy.io.netcdf returns the big-endian arrays directly.

CC @bareid

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/426/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 39.086ms · About: xarray-datasette