issues
5 rows where milestone = 1143506, state = "closed" and type = "pull" sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
88339814 | MDExOlB1bGxSZXF1ZXN0Mzc2NjMwMDc= | 434 | One less copy when reading big-endian data with engine='scipy' | shoyer 1217238 | closed | 0 | 0.5.1 1143506 | 0 | 2015-06-15T06:59:55Z | 2015-06-15T07:51:44Z | 2015-06-15T07:51:41Z | MEMBER | 0 | pydata/xarray/pulls/434 | { "url": "https://api.github.com/repos/pydata/xarray/issues/434/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
88240870 | MDExOlB1bGxSZXF1ZXN0Mzc2NDc1NDQ= | 433 | Assign order | shoyer 1217238 | closed | 0 | 0.5.1 1143506 | 0 | 2015-06-14T20:09:04Z | 2015-06-15T01:16:45Z | 2015-06-15T01:16:31Z | MEMBER | 0 | pydata/xarray/pulls/433 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/433/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
87025092 | MDExOlB1bGxSZXF1ZXN0MzczNzY5Njk= | 429 | Add pipe method copied from pandas | shoyer 1217238 | closed | 0 | 0.5.1 1143506 | 0 | 2015-06-10T16:19:52Z | 2015-06-11T16:45:57Z | 2015-06-11T16:45:56Z | MEMBER | 0 | pydata/xarray/pulls/429 | The implementation here is directly copied from pandas: https://github.com/pydata/pandas/pull/10253 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/429/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
85692656 | MDExOlB1bGxSZXF1ZXN0MzcwODQ0MjM= | 427 | Fix concat for identical index variables | shoyer 1217238 | closed | 0 | 0.5.1 1143506 | 0 | 2015-06-06T04:05:10Z | 2015-06-07T06:03:23Z | 2015-06-07T06:03:16Z | MEMBER | 0 | pydata/xarray/pulls/427 | Fixes #425 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/427/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
85670978 | MDExOlB1bGxSZXF1ZXN0MzcwODIzNjk= | 426 | Decode non-native endianness | shoyer 1217238 | closed | 0 | 0.5.1 1143506 | 0 | 2015-06-06T01:31:14Z | 2015-06-06T03:51:14Z | 2015-06-06T03:51:13Z | MEMBER | 0 | pydata/xarray/pulls/426 | Fixes #416 By the way, it turns out the simple work around for this was to install netCDF4 -- only scipy.io.netcdf returns the big-endian arrays directly. CC @bareid |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/426/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);