issues
10 rows where milestone = 1004936, repo = 13221727 and type = "pull" sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: user, comments, author_association, body, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
62469729 | MDExOlB1bGxSZXF1ZXN0MzEzNjA0NDg= | 377 | Add Appveyor for CI on Windows | shoyer 1217238 | closed | 0 | 0.4.1 1004936 | 0 | 2015-03-17T17:52:33Z | 2015-03-17T18:26:48Z | 2015-03-17T18:26:46Z | MEMBER | 0 | pydata/xarray/pulls/377 | Fixes #360 Note: several tests for netCDF4 were previously defined twice, by accident. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/377/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
62448740 | MDExOlB1bGxSZXF1ZXN0MzEzNTI0NDE= | 376 | BUG: Fix failing to determine time units | shoyer 1217238 | closed | 0 | 0.4.1 1004936 | 0 | 2015-03-17T16:32:00Z | 2015-03-17T16:40:25Z | 2015-03-17T16:40:23Z | MEMBER | 0 | pydata/xarray/pulls/376 | Fixed a regression in v0.4 where saving to netCDF could fail with the error
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/376/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
60951607 | MDExOlB1bGxSZXF1ZXN0MzEwOTI3MTg= | 372 | API: new methods {Dataset/DataArray}.swap_dims | shoyer 1217238 | closed | 0 | 0.4.1 1004936 | 2 | 2015-03-13T01:08:15Z | 2015-03-17T15:44:30Z | 2015-03-17T15:44:30Z | MEMBER | 0 | pydata/xarray/pulls/372 | Fixes #276 Exmaple usage: ``` In [8]: ds = xray.Dataset({'x': range(3), 'y': ('x', list('abc'))}) In [9]: ds Out[9]: <xray.Dataset> Dimensions: (x: 3) Coordinates: * x (x) int64 0 1 2 Data variables: y (x) |S1 'a' 'b' 'c' In [10]: ds.swap_dims({'x': 'y'}) Out[10]: <xray.Dataset> Dimensions: (y: 3) Coordinates: * y (y) |S1 'a' 'b' 'c' x (y) int64 0 1 2 Data variables: empty ``` This is a slightly more verbose API than strictly necessary, because the new
dimension names must be along existing dimensions (e.g., we could spell this
CC @aykuznetsova |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/372/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
62422715 | MDExOlB1bGxSZXF1ZXN0MzEzNDM4NjY= | 375 | DOC: Refreshed docs frontpage, including adding logo | shoyer 1217238 | closed | 0 | 0.4.1 1004936 | 0 | 2015-03-17T15:10:22Z | 2015-03-17T15:18:52Z | 2015-03-17T15:18:51Z | MEMBER | 0 | pydata/xarray/pulls/375 | { "url": "https://api.github.com/repos/pydata/xarray/issues/375/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
61377323 | MDExOlB1bGxSZXF1ZXN0MzExNzczNDU= | 373 | New docs on multi-file IO and time-series data | shoyer 1217238 | closed | 0 | 0.4.1 1004936 | 0 | 2015-03-14T03:12:50Z | 2015-03-16T04:02:20Z | 2015-03-16T04:02:18Z | MEMBER | 0 | pydata/xarray/pulls/373 | { "url": "https://api.github.com/repos/pydata/xarray/issues/373/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
59730888 | MDExOlB1bGxSZXF1ZXN0MzA0MjcxMjU= | 359 | Raise informative exception when _FillValue and missing_value disagree | akleeman 514053 | closed | 0 | 0.4.1 1004936 | 2 | 2015-03-04T00:22:41Z | 2015-03-12T16:33:47Z | 2015-03-12T16:32:07Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/359 | Previously conflicting _FillValue and missing_value only raised an AssertionError, now it's more informative. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/359/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
60423499 | MDExOlB1bGxSZXF1ZXN0MzA4MDc3NjU= | 366 | Silenced warnings for all-NaN slices when using nan functions from numpy | shoyer 1217238 | closed | 0 | 0.4.1 1004936 | 0 | 2015-03-09T22:48:20Z | 2015-03-10T06:49:11Z | 2015-03-10T06:49:09Z | MEMBER | 0 | pydata/xarray/pulls/366 | Fixes #344 These warnings are typically spurious on xray objects. Note that this does result in a small performance penalty for these functions (e.g., a few percent). This can be avoided by install bottleneck. CC @jhammon |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/366/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
60311603 | MDExOlB1bGxSZXF1ZXN0MzA3NDI3MDE= | 365 | Add "engine" argument and fix reading mmapped data with scipy.io.netcdf | shoyer 1217238 | closed | 0 | 0.4.1 1004936 | 0 | 2015-03-09T08:25:18Z | 2015-03-09T17:30:28Z | 2015-03-09T17:30:28Z | MEMBER | 0 | pydata/xarray/pulls/365 | Fixes #341 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/365/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
60273744 | MDExOlB1bGxSZXF1ZXN0MzA3MjU1NjI= | 363 | Fix (most) windows issues | shoyer 1217238 | closed | 0 | 0.4.1 1004936 | 0 | 2015-03-08T20:10:49Z | 2015-03-08T20:15:45Z | 2015-03-08T20:15:43Z | MEMBER | 0 | pydata/xarray/pulls/363 | xref #360 In this change: - Fix tests that relied on implicit conversion to int64 (Python's int on windows is int32). - Be more careful about always closing files, even in tests. Not addressed (yet): - Issues with scipy.io.netcdf_file (#341) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/363/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
59840149 | MDExOlB1bGxSZXF1ZXN0MzA0OTEyOTM= | 361 | Add resample, first and last | shoyer 1217238 | closed | 0 | 0.4.1 1004936 | 0 | 2015-03-04T18:32:24Z | 2015-03-05T19:29:42Z | 2015-03-05T19:29:39Z | MEMBER | 0 | pydata/xarray/pulls/361 | Fixes #354
``` In [1]: time = pd.date_range('2000-01-01', freq='6H', periods=10) In [2]: array = xray.DataArray(np.arange(10), [('time', time)]) In [3]: array.resample('1D', dim='time') Out[3]: <xray.DataArray (time: 3)> array([ 1.5, 5.5, 8.5]) Coordinates: * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 ``` You can specify how to do the resampling with the how argument and other options such as closed and label let you control labeling:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/361/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);