issues
4 rows where "created_at" is on date 2023-10-20, repo = 13221727 and user = 2448579 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1954809370 | I_kwDOAMm_X850hAYa | 8353 | Update benchmark suite for asv 0.6.1 | dcherian 2448579 | open | 0 | 0 | 2023-10-20T18:13:22Z | 2023-12-19T05:53:21Z | MEMBER | The new asv version comes with decorators for parameterizing and skipping, and the ability to use https://github.com/airspeed-velocity/asv/releases https://asv.readthedocs.io/en/v0.6.1/writing_benchmarks.html#skipping-benchmarks This might help us reduce benchmark times a bit, or at least simplify the code some. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8353/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1954445639 | I_kwDOAMm_X850fnlH | 8350 | optimize align for scalars at least | dcherian 2448579 | open | 0 | 5 | 2023-10-20T14:48:25Z | 2023-10-20T19:17:39Z | MEMBER | What happened?Here's a simple rescaling calculation: ```python import numpy as np import xarray as xr ds = xr.Dataset( {"a": (("x", "y"), np.ones((300, 400))), "b": (("x", "y"), np.ones((300, 400)))} ) mean = ds.mean() # scalar std = ds.std() # scalar rescaled = (ds - mean) / std ``` The profile for the last line shows 30% (!!!) time spent in This is a small example inspired by a ML pipeline where this normalization is happening very many times in a tight loop. cc @benbovy What did you expect to happen?A fast path for when no reindexing needs to happen. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8350/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1954535213 | PR_kwDOAMm_X85dZT47 | 8351 | [skip-ci] Add benchmarks for Dataset binary ops, chunk | dcherian 2448579 | closed | 0 | 1 | 2023-10-20T15:31:36Z | 2023-10-20T18:08:40Z | 2023-10-20T18:08:38Z | MEMBER | 0 | pydata/xarray/pulls/8351 | xref #8339 xref #8350 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8351/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1954360112 | PR_kwDOAMm_X85dYtpz | 8349 | [skip-ci] dev whats-new | dcherian 2448579 | closed | 0 | 1 | 2023-10-20T14:02:07Z | 2023-10-20T17:28:19Z | 2023-10-20T14:54:30Z | MEMBER | 0 | pydata/xarray/pulls/8349 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8349/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);