issues
3 rows where "created_at" is on date 2023-07-19 and user = 2448579 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1812301185 | I_kwDOAMm_X85sBYWB | 8005 | Design for IntervalIndex | dcherian 2448579 | open | 0 | 5 | 2023-07-19T16:30:50Z | 2023-09-09T06:30:20Z | MEMBER | Is your feature request related to a problem?We should add a wrapper for The CF designCF "encoding" for intervals is to use bounds variables. There is an attribute ```python import numpy as np left = np.arange(0.5, 3.6, 1) right = np.arange(1.5, 4.6, 1) bounds = np.stack([left, right]) ds = xr.Dataset( {"data": ("x", [1, 2, 3, 4])}, coords={"x": ("x", [1, 2, 3, 4], {"bounds": "x_bounds"}), "x_bounds": (("bnds", "x"), bounds)}, ) ds ``` A fundamental problem with our current data model is that we lose We would also like to use the "bounds" to enable interval based indexing. Pandas IntervalIndexAll the indexing is easy to implement by wrapping pandas.IntervalIndex, but there is one limitation. Fundamental QuestionTo me, a core question is whether
Describe the solution you'd likeI've prototyped (2) [approach 1 in this notebook) following @benbovy's suggestion
```python
from xarray import Variable
from xarray.indexes import PandasIndex
class XarrayIntervalIndex(PandasIndex):
def __init__(self, index, dim, coord_dtype):
assert isinstance(index, pd.IntervalIndex)
# for PandasIndex
self.index = index
self.dim = dim
self.coord_dtype = coord_dtype
@classmethod
def from_variables(cls, variables, options):
assert len(variables) == 1
(dim,) = tuple(variables)
bounds = options["bounds"]
assert isinstance(bounds, (xr.DataArray, xr.Variable))
(axis,) = bounds.get_axis_num(set(bounds.dims) - {dim})
left, right = np.split(bounds.data, 2, axis=axis)
index = pd.IntervalIndex.from_arrays(left.squeeze(), right.squeeze())
coord_dtype = bounds.dtype
return cls(index, dim, coord_dtype)
def create_variables(self, variables):
from xarray.core.indexing import PandasIndexingAdapter
newvars = {self.dim: xr.Variable(self.dim, PandasIndexingAdapter(self.index))}
return newvars
def __repr__(self):
string = f"Xarray{self.index!r}"
return string
def to_pandas_index(self):
return self.index
@property
def mid(self):
return PandasIndex(self.index.right, self.dim, self.coord_dtype)
@property
def left(self):
return PandasIndex(self.index.right, self.dim, self.coord_dtype)
@property
def right(self):
return PandasIndex(self.index.right, self.dim, self.coord_dtype)
```
Describe alternatives you've consideredI've tried some approaches in this notebook |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8005/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1812504689 | I_kwDOAMm_X85sCKBx | 8006 | Fix documentation about datetime_unit of xarray.DataArray.differentiate | dcherian 2448579 | closed | 0 | 0 | 2023-07-19T18:31:10Z | 2023-09-01T09:37:15Z | 2023-09-01T09:37:15Z | MEMBER | Should say that Discussed in https://github.com/pydata/xarray/discussions/8000
<sup>Originally posted by **jesieleo** July 19, 2023</sup>
I have a piece of data that looks like this
```
<xarray.Dataset>
Dimensions: (time: 612, LEV: 15, latitude: 20, longitude: 357)
Coordinates:
* time (time) datetime64[ns] 1960-01-15 1960-02-15 ... 2010-12-15
* LEV (LEV) float64 5.01 15.07 25.28 35.76 ... 149.0 171.4 197.8 229.5
* latitude (latitude) float64 -4.75 -4.25 -3.75 -3.25 ... 3.75 4.25 4.75
* longitude (longitude) float64 114.2 114.8 115.2 115.8 ... 291.2 291.8 292.2
Data variables:
u (time, LEV, latitude, longitude) float32 ...
Attributes: (12/30)
cdm_data_type: Grid
Conventions: COARDS, CF-1.6, ACDD-1.3
creator_email: chepurin@umd.edu
creator_name: APDRC
creator_type: institution
creator_url: https://www.atmos.umd.edu/~ocean/
... ...
standard_name_vocabulary: CF Standard Name Table v29
summary: Simple Ocean Data Assimilation (SODA) soda po...
time_coverage_end: 2010-12-15T00:00:00Z
time_coverage_start: 1983-01-15T00:00:00Z
title: SODA soda pop2.2.4 [TIME][LEV][LAT][LON]
Westernmost_Easting: 118.25
```
when i try to use xarray.DataArray.differentiate
`data.u.differentiate('time',datetime_unit='M')`
will appear
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\Anaconda3\lib\site-packages\xarray\core\dataarray.py", line 3609, in differentiate
ds = self._to_temp_dataset().differentiate(coord, edge_order, datetime_unit)
File "D:\Anaconda3\lib\site-packages\xarray\core\dataset.py", line 6372, in differentiate
coord_var = coord_var._to_numeric(datetime_unit=datetime_unit)
File "D:\Anaconda3\lib\site-packages\xarray\core\variable.py", line 2428, in _to_numeric
numeric_array = duck_array_ops.datetime_to_numeric(
File "D:\Anaconda3\lib\site-packages\xarray\core\duck_array_ops.py", line 466, in datetime_to_numeric
array = array / np.timedelta64(1, datetime_unit)
TypeError: Cannot get a common metadata divisor for Numpy datatime metadata [ns] and [M] because they have incompatible nonlinear base time units.
```
Would you please told me is this a BUG? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8006/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1812646094 | PR_kwDOAMm_X85V7g7q | 8007 | Update copyright year in README | dcherian 2448579 | closed | 0 | 0 | 2023-07-19T20:00:50Z | 2023-07-20T21:13:27Z | 2023-07-20T21:13:26Z | MEMBER | 0 | pydata/xarray/pulls/8007 | { "url": "https://api.github.com/repos/pydata/xarray/issues/8007/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);