home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

2 rows where "created_at" is on date 2023-01-24 and user = 14371165 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 1

  • pull 2

state 1

  • closed 2

repo 1

  • xarray 2
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
1554036799 PR_kwDOAMm_X85IYHUz 7472 Avoid in-memory broadcasting when converting to_dask_dataframe Illviljan 14371165 closed 0     1 2023-01-24T00:15:01Z 2023-01-26T17:00:24Z 2023-01-26T17:00:23Z MEMBER   0 pydata/xarray/pulls/7472

Turns out that there's a call to .set_dims that forces a broadcast on the numpy coordinates.

  • [x] Closes #6811
  • [x] Tests added, see #7474.
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

Debugging script:

```python import dask.array as da import xarray as xr import numpy as np chunks = 5000 # I have to restart the pc if running with this: # dim1_sz = 100_000 # dim2_sz = 100_000 # Does not crash when using the following constants, >5 gig RAM increase though: dim1_sz = 40_000 dim2_sz = 40_000 x = da.random.random((dim1_sz, dim2_sz), chunks=chunks) ds = xr.Dataset( { "x": xr.DataArray( data=x, dims=["dim1", "dim2"], coords={"dim1": np.arange(0, dim1_sz), "dim2": np.arange(0, dim2_sz)}, ) } ) # with dask.config.set(**{"array.slicing.split_large_chunks": True}): df = ds.to_dask_dataframe() print(df) ```
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7472/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1555497796 PR_kwDOAMm_X85Ic_wm 7474 Add benchmarks for to_dataframe and to_dask_dataframe Illviljan 14371165 closed 0     1 2023-01-24T18:48:26Z 2023-01-24T21:00:39Z 2023-01-24T20:13:30Z MEMBER   0 pydata/xarray/pulls/7474

Related to #7472.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7474/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 40.071ms · About: xarray-datasette