home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

2 rows where "created_at" is on date 2021-07-05 and user = 2448579 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 2

  • issue 1
  • pull 1

state 2

  • closed 1
  • open 1

repo 1

  • xarray 2
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
937266282 MDU6SXNzdWU5MzcyNjYyODI= 5578 Specify minimum versions in setup.cfg dcherian 2448579 open 0     2 2021-07-05T17:25:03Z 2022-01-09T03:33:38Z   MEMBER      

See https://github.com/pydata/xarray/issues/5342#issuecomment-873660034

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5578/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
937264431 MDExOlB1bGxSZXF1ZXN0NjgzODQ5MjQ5 5577 Faster unstacking to sparse dcherian 2448579 closed 0     4 2021-07-05T17:20:59Z 2021-12-03T16:38:51Z 2021-12-03T16:38:49Z MEMBER   0 pydata/xarray/pulls/5577
  • [x] Tests added
  • [x] Passes pre-commit run --all-files
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

From 7s to 25 ms and 3.5GB to 850MB memory usage =) by passing the coordinate locations directly to the sparse constructor. ``` asv run -e --bench unstacking.UnstackingSparse.time_unstack_to_sparse --cpu-affinity=3 HEAD [ 0.00%] · For xarray commit c9251e1c <sparse-unstack>: [ 0.00%] ·· Building for conda-py3.8-bottleneck-dask-distributed-netcdf4-numpy-pandas-scipy-sparse [ 0.00%] ·· Benchmarking conda-py3.8-bottleneck-dask-distributed-netcdf4-numpy-pandas-scipy-sparse [ 0.01%] ··· Running (unstacking.UnstackingSparse.time_unstack_to_sparse_2d--).. [ 0.02%] ··· unstacking.UnstackingSparse.time_unstack_to_sparse_2d 623±30μs [ 0.02%] ··· unstacking.UnstackingSparse.time_unstack_to_sparse_3d 22.8±2ms [ 0.06%] ··· unstacking.UnstackingSparse.peakmem_unstack_to_sparse_2d 793M [ 0.06%] ··· unstacking.UnstackingSparse.peakmem_unstack_to_sparse_3d 794M

[ 0.04%] · For xarray commit 80905135 <main>: [ 0.04%] ·· Building for conda-py3.8-bottleneck-dask-distributed-netcdf4-numpy-pandas-scipy-sparse.. [ 0.04%] ·· Benchmarking conda-py3.8-bottleneck-dask-distributed-netcdf4-numpy-pandas-scipy-sparse [ 0.05%] ··· Running (unstacking.UnstackingSparse.time_unstack_to_sparse_2d--).. [ 0.06%] ··· unstacking.UnstackingSparse.time_unstack_to_sparse_2d 596±30ms [ 0.06%] ··· unstacking.UnstackingSparse.time_unstack_to_sparse_3d 7.72±0.1s [ 0.02%] ··· unstacking.UnstackingSparse.peakmem_unstack_to_sparse_2d 867M [ 0.02%] ··· unstacking.UnstackingSparse.peakmem_unstack_to_sparse_3d 3.56G ```

cc @bonnland

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/5577/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 42.07ms · About: xarray-datasette