issues
1 row where "created_at" is on date 2021-07-05, state = "closed" and user = 2448579 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 937264431 | MDExOlB1bGxSZXF1ZXN0NjgzODQ5MjQ5 | 5577 | Faster unstacking to sparse | dcherian 2448579 | closed | 0 | 4 | 2021-07-05T17:20:59Z | 2021-12-03T16:38:51Z | 2021-12-03T16:38:49Z | MEMBER | 0 | pydata/xarray/pulls/5577 |
From 7s to 25 ms and 3.5GB to 850MB memory usage =) by passing the coordinate locations directly to the sparse constructor. ``` asv run -e --bench unstacking.UnstackingSparse.time_unstack_to_sparse --cpu-affinity=3 HEAD [ 0.00%] · For xarray commit c9251e1c <sparse-unstack>: [ 0.00%] ·· Building for conda-py3.8-bottleneck-dask-distributed-netcdf4-numpy-pandas-scipy-sparse [ 0.00%] ·· Benchmarking conda-py3.8-bottleneck-dask-distributed-netcdf4-numpy-pandas-scipy-sparse [ 0.01%] ··· Running (unstacking.UnstackingSparse.time_unstack_to_sparse_2d--).. [ 0.02%] ··· unstacking.UnstackingSparse.time_unstack_to_sparse_2d 623±30μs [ 0.02%] ··· unstacking.UnstackingSparse.time_unstack_to_sparse_3d 22.8±2ms [ 0.06%] ··· unstacking.UnstackingSparse.peakmem_unstack_to_sparse_2d 793M [ 0.06%] ··· unstacking.UnstackingSparse.peakmem_unstack_to_sparse_3d 794M [ 0.04%] · For xarray commit 80905135 <main>: [ 0.04%] ·· Building for conda-py3.8-bottleneck-dask-distributed-netcdf4-numpy-pandas-scipy-sparse.. [ 0.04%] ·· Benchmarking conda-py3.8-bottleneck-dask-distributed-netcdf4-numpy-pandas-scipy-sparse [ 0.05%] ··· Running (unstacking.UnstackingSparse.time_unstack_to_sparse_2d--).. [ 0.06%] ··· unstacking.UnstackingSparse.time_unstack_to_sparse_2d 596±30ms [ 0.06%] ··· unstacking.UnstackingSparse.time_unstack_to_sparse_3d 7.72±0.1s [ 0.02%] ··· unstacking.UnstackingSparse.peakmem_unstack_to_sparse_2d 867M [ 0.02%] ··· unstacking.UnstackingSparse.peakmem_unstack_to_sparse_3d 3.56G ``` cc @bonnland |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/5577/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);