issues
2 rows where "created_at" is on date 2021-07-03 and user = 35968931 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
936313924 | MDExOlB1bGxSZXF1ZXN0NjgzMDY3OTU5 | 5571 | Rely on NEP-18 to dispatch to dask in duck_array_ops | TomNicholas 35968931 | closed | 0 | 20 | 2021-07-03T19:24:33Z | 2022-07-09T18:12:05Z | 2021-09-29T17:48:40Z | MEMBER | 0 | pydata/xarray/pulls/5571 | Removes special-casing for dask in Probably actually don't need the Only problem is that I seem to have broken one (parameterized) test: ```python @pytest.mark.parametrize("dim_num", [1, 2]) @pytest.mark.parametrize("dtype", [float, int, np.float32, np.bool_]) @pytest.mark.parametrize("dask", [False, True]) @pytest.mark.parametrize("func", ["sum", "prod"]) @pytest.mark.parametrize("aggdim", [None, "x"]) @pytest.mark.parametrize("contains_nan", [True, False]) @pytest.mark.parametrize("skipna", [True, False, None]) def test_min_count(dim_num, dtype, dask, func, aggdim, contains_nan, skipna): if dask and not has_dask: pytest.skip("requires dask")
/home/tegn500/Documents/Work/Code/xarray/xarray/tests/test_duck_array_ops.py:578: /home/tegn500/Documents/Work/Code/xarray/xarray/core/common.py:56: in wrapped_func return self.reduce(func, dim, axis, skipna=skipna, kwargs) /home/tegn500/Documents/Work/Code/xarray/xarray/core/dataarray.py:2638: in reduce var = self.variable.reduce(func, dim, axis, keep_attrs, keepdims, kwargs) /home/tegn500/Documents/Work/Code/xarray/xarray/core/variable.py:1725: in reduce data = func(self.data, kwargs) /home/tegn500/Documents/Work/Code/xarray/xarray/core/duck_array_ops.py:328: in f return func(values, axis=axis, kwargs) /home/tegn500/Documents/Work/Code/xarray/xarray/core/nanops.py:106: in nansum a, mask = _replace_nan(a, 0) /home/tegn500/Documents/Work/Code/xarray/xarray/core/nanops.py:23: in _replace_nan mask = isnull(a) /home/tegn500/Documents/Work/Code/xarray/xarray/core/duck_array_ops.py:83: in isnull return pandas_isnull(data) /home/tegn500/Documents/Work/Code/xarray/xarray/core/duck_array_ops.py:40: in f return getattr(module, name)(args, kwargs) /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/pandas/core/dtypes/missing.py:127: in isna return _isna(obj) /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/pandas/core/dtypes/missing.py:166: in _isna return _isna_ndarraylike(np.asarray(obj), inf_as_na=inf_as_na) /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/numpy/core/_asarray.py:102: in asarray return array(a, dtype, copy=False, order=order) /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/dask/array/core.py:1502: in array x = self.compute() /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/dask/base.py:285: in compute (result,) = compute(self, traverse=False, kwargs) /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/dask/base.py:567: in compute results = schedule(dsk, keys, *kwargs) self = <xarray.tests.CountingScheduler object at 0x7f0804db2310> dsk = {('xarray-<this-array>-29953318277423606f95b509ad1a9aa7', 0): array([False, False, False, False], dtype=object), ('xar...pe=object), ('xarray-<this-array>-29953318277423606f95b509ad1a9aa7', 3): array([nan, False, False, nan], dtype=object)} keys = [[('xarray-<this-array>-29953318277423606f95b509ad1a9aa7', 0), ('xarray-<this-array>-29953318277423606f95b509ad1a9aa7'...array-<this-array>-29953318277423606f95b509ad1a9aa7', 2), ('xarray-<this-array>-29953318277423606f95b509ad1a9aa7', 3)]] kwargs = {}
/home/tegn500/Documents/Work/Code/xarray/xarray/tests/init.py:118: RuntimeError ```
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5571/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
936305081 | MDU6SXNzdWU5MzYzMDUwODE= | 5570 | assert_equal does not handle wrapped duck arrays well | TomNicholas 35968931 | open | 0 | 0 | 2021-07-03T18:27:11Z | 2021-07-03T18:49:57Z | MEMBER | Whilst trying to fix #5559 I noticed that Firstly, they can give unhelpful ```python In [5]: a = np.array([1,2,3]) In [6]: q = pint.Quantity([1,2,3], units='m') In [7]: da_np = xr.DataArray(a, dims='x') In [8]: da_p = xr.DataArray(q, dims='x') In [9]: da_np Out[9]: <xarray.DataArray (x: 3)> array([1, 2, 3]) Dimensions without coordinates: x In [10]: da_p Out[10]: <xarray.DataArray (x: 3)> <Quantity([1 2 3], 'meter')> Dimensions without coordinates: x In [11]: from xarray.testing import assert_equal In [12]: assert_equal(da_np, da_p) /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/xarray/core/duck_array_ops.py:265: UnitStrippedWarning: The unit of the quantity is stripped when downcasting to ndarray. flag_array = (arr1 == arr2) | (isnull(arr1) & isnull(arr2)) /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/xarray/core/duck_array_ops.py:265: DeprecationWarning: elementwise comparison failed; this will raise an error in the future. flag_array = (arr1 == arr2) | (isnull(arr1) & isnull(arr2)) /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/xarray/core/duck_array_ops.py:265: UnitStrippedWarning: The unit of the quantity is stripped when downcasting to ndarray. flag_array = (arr1 == arr2) | (isnull(arr1) & isnull(arr2)) /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/xarray/core/duck_array_ops.py:265: DeprecationWarning: elementwise comparison failed; this will raise an error in the future. flag_array = (arr1 == arr2) | (isnull(arr1) & isnull(arr2)) /home/tegn500/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/numpy/core/_asarray.py:102: UnitStrippedWarning: The unit of the quantity is stripped when downcasting to ndarray. return array(a, dtype, copy=False, order=order) AssertionError Traceback (most recent call last) <ipython-input-12-33b16d6b79ed> in <module> ----> 1 assert_equal(da_np, da_p)
~/miniconda3/envs/py38-mamba/lib/python3.8/site-packages/xarray/testing.py in assert_equal(a, b) 79 assert type(a) == type(b) 80 if isinstance(a, (Variable, DataArray)): ---> 81 assert a.equals(b), formatting.diff_array_repr(a, b, "equals") 82 elif isinstance(a, Dataset): 83 assert a.equals(b), formatting.diff_dataset_repr(a, b, "equals") AssertionError: Left and right DataArray objects are not equal Differing values:
L
array([1, 2, 3])
R
array([1, 2, 3])
Secondly, given that we coerce before comparison, I think it's possible that EDIT2: Looks like there is some discussion here |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5570/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);