issues
2 rows where "created_at" is on date 2021-01-04 and user = 14371165 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
778123296 | MDExOlB1bGxSZXF1ZXN0NTQ4MjY4ODg5 | 4762 | Print number of variables in repr | Illviljan 14371165 | closed | 0 | 6 | 2021-01-04T14:13:17Z | 2021-05-18T18:17:50Z | 2021-01-12T00:21:19Z | MEMBER | 0 | pydata/xarray/pulls/4762 | Show the printed and total number of variables in the repr.
```python import numpy as np import xarray as xr a = np.arange(0, 15) b = np.core.defchararray.add("long_variable_name", a.astype(str)) c = np.arange(0, 25) d = np.core.defchararray.add("attr_", c.astype(str)) e = {k: 2 for k in d} coords = dict(time=da.array([0, 1])) data_vars = dict() for v in b: data_vars[v] = xr.DataArray( name=v, data=np.array([0, 1]).astype(bool), dims=["time"], coords=coords, ) ds1 = xr.Dataset(data_vars) ds1.attrs = e The repr now shows how many attributes in total there are:print(ds1) Out[10]: <xarray.Dataset> Dimensions: (time: 2) Coordinates: * time (time) int32 0 1 Data variables: (12/15) long_variable_name0 (time) bool False True long_variable_name1 (time) bool False True long_variable_name2 (time) bool False True long_variable_name3 (time) bool False True long_variable_name4 (time) bool False True long_variable_name5 (time) bool False True ... long_variable_name9 (time) bool False True long_variable_name10 (time) bool False True long_variable_name11 (time) bool False True long_variable_name12 (time) bool False True long_variable_name13 (time) bool False True long_variable_name14 (time) bool False True Attributes: (12/25) attr_0: 2 attr_1: 2 attr_2: 2 attr_3: 2 attr_4: 2 attr_5: 2 ... attr_19: 2 attr_20: 2 attr_21: 2 attr_22: 2 attr_23: 2 attr_24: 2 ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4762/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
778083748 | MDU6SXNzdWU3NzgwODM3NDg= | 4761 | Dataset.interp drops boolean variables | Illviljan 14371165 | closed | 0 | 0 | 2021-01-04T13:09:56Z | 2021-05-13T15:28:15Z | 2021-05-13T15:28:15Z | MEMBER | What happened:
What you expected to happen: If I'm interpolating a group of variables I expect to get all of them back in the correct shape with relevant values in them. If the variables are boolean or object arrays I don't expect it to do linear interpolation because it doesn't make sense but stepwise interpolation like nearest or zero order interpolation should be fine to expect. Minimal Complete Verifiable Example: ```python import numpy as np a = np.arange(0, 5) b = np.core.defchararray.add("long_variable_name", a.astype(str)) coords = dict(time=da.array([0, 1])) data_vars = dict() for v in b: data_vars[v] = xr.DataArray( name=v, data=np.array([0, 1]).astype(bool), dims=["time"], coords=coords, ) ds1 = xr.Dataset(data_vars) Print raw data:print(ds1) Out[3]: <xarray.Dataset> Dimensions: (time: 2) Coordinates: * time (time) int32 0 1 Data variables: long_variable_name0 (time) bool False True long_variable_name1 (time) bool False True long_variable_name2 (time) bool False True long_variable_name3 (time) bool False True long_variable_name4 (time) bool False True Interpolate:ds1 = ds1.interp( time=da.array([0, 0.5, 1, 2]), assume_sorted=True, method="nearest", kwargs=dict(fill_value="extrapolate"), ) Print interpolated data:<xarray.Dataset> Dimensions: (time: 4) Coordinates: * time (time) float64 0.0 0.5 1.0 2.0 Data variables: empty ``` Anything else we need to know?:
Environment: Output of <tt>xr.show_versions()</tt>xr.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] python-bits: 64 OS: Windows libhdf5: 1.10.4 libnetcdf: None xarray: 0.16.2 pandas: 1.1.5 numpy: 1.17.5 scipy: 1.4.1 netCDF4: None pydap: None h5netcdf: None h5py: 2.10.0 Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.2 dask: 2020.12.0 distributed: 2020.12.0 matplotlib: 3.3.2 cartopy: None seaborn: 0.11.1 numbagg: None pint: None setuptools: 51.0.0.post20201207 pip: 20.3.3 conda: 4.9.2 pytest: 6.2.1 IPython: 7.19.0 sphinx: 3.4.0 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4761/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);