issues
6 rows where comments = 8, type = "pull" and user = 14371165 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: draft, created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1953053810 | PR_kwDOAMm_X85dURGi | 8344 | Add mean to NamedArray._array_api | Illviljan 14371165 | open | 0 | 8 | 2023-10-19T21:05:06Z | 2023-12-19T17:49:22Z | MEMBER | 1 | pydata/xarray/pulls/8344 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8344/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
970245117 | MDExOlB1bGxSZXF1ZXN0NzEyMjIzNzc2 | 5704 | Allow in-memory arrays with open_mfdataset | Illviljan 14371165 | open | 0 | 8 | 2021-08-13T09:50:26Z | 2023-04-29T06:58:26Z | MEMBER | 0 | pydata/xarray/pulls/5704 | The docstring seems to imply that it's possible to get in-memory arrays: https://github.com/pydata/xarray/blob/4bb9d9c6df77137f05e85c7cc6508fe7a93dc0e4/xarray/backends/api.py#L732 But it doesn't seem possible because of: https://github.com/pydata/xarray/blob/4bb9d9c6df77137f05e85c7cc6508fe7a93dc0e4/xarray/backends/api.py#L899 This PR removes that
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5704/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
931016490 | MDExOlB1bGxSZXF1ZXN0Njc4NTc5MjIx | 5542 | Do not transpose 1d arrays during interpolation | Illviljan 14371165 | open | 0 | 8 | 2021-06-27T20:56:13Z | 2022-10-12T20:12:11Z | MEMBER | 0 | pydata/xarray/pulls/5542 | Seems a waste of time to transpose 1d arrays.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5542/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
957432870 | MDExOlB1bGxSZXF1ZXN0NzAwODYwMzY4 | 5661 | Speed up _mapping_repr | Illviljan 14371165 | closed | 0 | 8 | 2021-08-01T08:44:17Z | 2022-08-12T09:07:44Z | 2021-08-02T19:45:16Z | MEMBER | 0 | pydata/xarray/pulls/5661 | Creating a ordered list for filtering purposes using
Test case: ```python import numpy as np import xarray as xr a = np.arange(0, 2000) data_vars = dict() for i in a: data_vars[f"long_variable_name_{i}"] = xr.DataArray( name=f"long_variable_name_{i}", data=np.arange(0, 20), dims=[f"long_coord_name_{i}x"], coords={f"long_coord_name{i}x": np.arange(0, 20) * 2}, ) ds0 = xr.Dataset(data_vars) ds0.attrs = {f"attr{k}": 2 for k in a} ``` Before:
After:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5661/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
830918156 | MDExOlB1bGxSZXF1ZXN0NTkyMzc2Mzk2 | 5031 | Keep coord attrs when interpolating | Illviljan 14371165 | closed | 0 | 8 | 2021-03-13T15:05:39Z | 2021-05-18T18:16:10Z | 2021-04-27T07:00:08Z | MEMBER | 0 | pydata/xarray/pulls/5031 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5031/reactions", "total_count": 2, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 1, "eyes": 0 } |
xarray 13221727 | pull | |||||
777526340 | MDExOlB1bGxSZXF1ZXN0NTQ3Nzk5MDk2 | 4750 | Limit number of data rows shown in repr | Illviljan 14371165 | closed | 0 | 8 | 2021-01-02T21:14:50Z | 2021-01-04T02:13:52Z | 2021-01-04T02:13:52Z | MEMBER | 0 | pydata/xarray/pulls/4750 |
Test example:
Looks like this with 24 max rows of interesting data:
With 16 rows of interesting data:
With 12 rows of interesting data: ```python xr.set_options(display_max_rows=12) print(ds0) Out[79]: <xarray.Dataset> Dimensions: (time: 2) Coordinates: * time (time) int32 0 1 Data variables: long_variable_name0 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> long_variable_name1 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> long_variable_name2 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> long_variable_name3 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> long_variable_name4 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> long_variable_name5 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> ... long_variable_name1994 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> long_variable_name1995 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> long_variable_name1996 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> long_variable_name1997 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> long_variable_name1998 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> long_variable_name1999 (time) int32 dask.array<chunksize=(2,), meta=np.ndarray> Attributes: attr_0: 2 attr_1: 2 attr_2: 2 attr_3: 2 attr_4: 2 attr_5: 2 ... attr_24: 2 attr_25: 2 attr_26: 2 attr_27: 2 attr_28: 2 attr_29: 2 ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4750/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);