issues
5 rows where comments = 7, type = "issue" and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2026963757 | I_kwDOAMm_X8540QMt | 8522 | Test failures on `main` | max-sixty 5635139 | closed | 0 | 7 | 2023-12-05T19:22:01Z | 2023-12-06T18:48:24Z | 2023-12-06T17:28:13Z | MEMBER | What is your issue?Any ideas what could be causing these? I can't immediately reproduce locally. https://github.com/pydata/xarray/actions/runs/7105414268/job/19342564583 ``` Error: TestDataArray.test_computation_objects[int64-method_groupby_bins-data] AssertionError: Left and right DataArray objects are not close Differing values: L <Quantity([[ nan nan 1. 1. ] [2. 2. 3. 3. ] [4. 4. 5. 5. ] [6. 6. 7. 7. ] [8. 8. 9. 9.333333]], 'meter')> R <Quantity([[0. 0. 1. 1. ] [2. 2. 3. 3. ] [4. 4. 5. 5. ] [6. 6. 7. 7. ] [8. 8. 9. 9.333333]], 'meter')> ``` |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/8522/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 1,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 521754870 | MDU6SXNzdWU1MjE3NTQ4NzA= | 3514 | Should we cache some small properties? | max-sixty 5635139 | open | 0 | 7 | 2019-11-12T19:28:21Z | 2019-11-16T04:32:11Z | MEMBER | I was doing some profiling on Pandas uses cache_readonly for these cases. Here's a case: we call I don't think this is the solution to performance issues, and there's some additional complexity. Could they be easy & small wins, though? |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/3514/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | issue | ||||||||
| 267826297 | MDU6SXNzdWUyNjc4MjYyOTc= | 1651 | ENH: Forward & back fill methods | max-sixty 5635139 | closed | 0 | 7 | 2017-10-23T21:39:18Z | 2018-02-09T17:36:30Z | 2018-02-09T17:36:29Z | MEMBER | I think with One small issue, I wonder if anyone has come across this: Forward fill:
Backfill: ``` axis = array.get_axis_num(axis_name) reverse for bfillarray = np.flip(array, axis=axis) fillarray.values = bn.push(array.values, axis=axis) reverse back to originalresult = np.flip(scaling, axis=date_axis) ``` |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/1651/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 156591025 | MDU6SXNzdWUxNTY1OTEwMjU= | 859 | BUG: Rolling on Dataset | max-sixty 5635139 | closed | 0 | 7 | 2016-05-24T19:35:32Z | 2017-03-31T03:10:45Z | 2017-03-31T03:10:45Z | MEMBER | This looks like it's available with ``` python In [13]: xr.DataArray(np.random.rand(10,3)).to_dataset('dim_1').rolling AttributeError Traceback (most recent call last) <ipython-input-13-438d3638a0d0> in <module>() ----> 1 xr.DataArray(np.random.rand(10,3)).to_dataset('dim_1').rolling /Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/xarray/core/common.py in getattr(self, name) 135 return source[name] 136 raise AttributeError("%r object has no attribute %r" % --> 137 (type(self).name, name)) 138 139 def setattr(self, name, value): AttributeError: 'Dataset' object has no attribute 'rolling' ``` I think this could be easy to implement as an Also, as a very narrow point, I'm not sure why Finally, the Rolling implementation is pretty sweet. I've been getting my hands dirty in the pandas one recently, and that we can have something as well featured as that with so few lines of code 👍 |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/859/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 124441012 | MDU6SXNzdWUxMjQ0NDEwMTI= | 692 | Transpose modifies dtype of index, when a PeriodIndex | max-sixty 5635139 | closed | 0 | 7 | 2015-12-31T07:11:56Z | 2016-01-03T18:41:04Z | 2016-01-02T01:48:48Z | MEMBER | This is very peculiar & specific, but also fairly impactful for us. If you
- Create a Dataset with a ...then the type of the index changes from object to int64. This then causes other arrays added to that dataset to show up as Here's an example. Note the ``` python In [61]: series = pd.Series(np.random.rand(10),index=pd.period_range(start='2000', periods=10,name='date')) ds = xray.Dataset({'number 1':series}) ds['number 2'] = ds['number 1'] ds, ds.date.dtype Out[61]: (<xray.Dataset> Dimensions: (date: 10) Coordinates: * date (date) object 10957 10958 10959 10960 10961 10962 10963 10964 ... Data variables: number 1 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 0.6723 ... number 2 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 0.6723 ..., dtype('O')) In [62]: ds, ds.date.dtype ds=ds.transpose('date') ds, ds.date.dtype Out[62]: (<xray.Dataset> Dimensions: (date: 10) Coordinates: * date (date) object 10957 10958 10959 10960 10961 10962 10963 10964 ... Data variables: number 1 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 0.6723 ... number 2 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 0.6723 ..., dtype('O')) In [63]: ds ds['number 3'] = ds['number 1'] ds, ds.date.dtype Out[63]: (<xray.Dataset> Dimensions: (date: 10) Coordinates: * date (date) object 10957 10958 10959 10960 10961 10962 10963 10964 ... Data variables: number 1 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 0.6723 ... number 2 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 0.6723 ... number 3 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 0.6723 ..., dtype('O')) In [64]: ds ds['number 4'] = ds['number 1'][:5] ds, ds.date.dtype Out[64]: (<xray.Dataset> Dimensions: (date: 10) Coordinates: * date (date) int64 10957 10958 10959 10960 10961 10962 10963 10964 ... Data variables: number 1 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 0.6723 ... number 2 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 0.6723 ... number 3 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 0.6723 ... number 4 (date) float64 0.1133 0.5952 0.5467 0.2035 0.2022 nan nan nan ..., dtype('int64')) ``` |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/692/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);