issues
3 rows where comments = 4 and "updated_at" is on date 2022-04-28 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: author_association, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1218094019 | PR_kwDOAMm_X8426dL2 | 6534 | Attempt to improve CI caching | max-sixty 5635139 | closed | 0 | 4 | 2022-04-28T02:16:29Z | 2022-04-28T23:55:16Z | 2022-04-28T06:30:25Z | MEMBER | 0 | pydata/xarray/pulls/6534 | Currently about 40% of the time is taken by installing things, hopefully we can cut that down |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6534/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
620468256 | MDU6SXNzdWU2MjA0NjgyNTY= | 4076 | Zarr ZipStore versus DirectoryStore: ZipStore requires .close() | Huite 13662783 | open | 0 | 4 | 2020-05-18T19:58:21Z | 2022-04-28T22:37:48Z | CONTRIBUTOR | I was saving my dataset into a ZipStore -- apparently succesfully -- but then I couldn't reopen them. The issue appears to be that a regular DirectoryStore behaves a little differently: it doesn't need to be closed, while a ZipStore. (I'm not sure how this relates to #2586, the remarks there don't appear to be applicable anymore.) MCVE Code SampleThis errors: ```python import xarray as xr import zarr works as expectedds = xr.Dataset({'foo': [2,3,4], 'bar': ('x', [1, 2]), 'baz': 3.14}) ds.to_zarr(zarr.DirectoryStore("test.zarr")) print(xr.open_zarr(zarr.DirectoryStore("test.zarr"))) error with ValueError "group not found at path ''ds.to_zarr(zarr.ZipStore("test.zip")) print(xr.open_zarr(zarr.ZipStore("test.zip"))) ``` Calling close, or using ```python store = zarr.ZipStore("test2.zip") ds.to_zarr(store) store.close() print(xr.open_zarr(zarr.ZipStore("test2.zip"))) with zarr.ZipStore("test3.zip") as store: ds.to_zarr(store) print(xr.open_zarr(zarr.ZipStore("test3.zip"))) ``` Expected OutputI think it would be preferable to close the ZipStore in this case. But I might be missing something? Problem DescriptionBecause VersionsOutput of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.7.6 | packaged by conda-forge | (default, Jan 7 2020, 21:48:41) [MSC v.1916 64 bit (AMD64)] python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 158 Stepping 9, GenuineIntel byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: None.None libhdf5: 1.10.5 libnetcdf: 4.7.3 xarray: 0.15.2.dev41+g8415eefa.d20200419 pandas: 0.25.3 numpy: 1.17.5 scipy: 1.3.1 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: 2.10.0 Nio: None zarr: 2.4.0 cftime: 1.0.4.2 nc_time_axis: None PseudoNetCDF: None rasterio: 1.1.2 cfgrib: None iris: None bottleneck: 1.3.2 dask: 2.14.0+23.gbea4c9a2 distributed: 2.14.0 matplotlib: 3.1.2 cartopy: None seaborn: 0.10.0 numbagg: None pint: None setuptools: 46.1.3.post20200325 pip: 20.0.2 conda: None pytest: 5.3.4 IPython: 7.13.0 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4076/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
412180435 | MDU6SXNzdWU0MTIxODA0MzU= | 2780 | Automatic dtype encoding in to_netcdf | nedclimaterisk 43126798 | open | 0 | 4 | 2019-02-19T23:56:48Z | 2022-04-28T19:01:34Z | CONTRIBUTOR | Code Sample, a copy-pastable example if possibleExample from https://stackoverflow.com/questions/49053692/csv-to-netcdf-produces-nc-files-4x-larger-than-the-original-csv ```{python} import pandas as pd import xarray as xr import numpy as np import os Create pandas DataFramedf = pd.DataFrame(np.random.randint(low=0, high=10, size=(100000,5)), columns=['a', 'b', 'c', 'd', 'e']) Make 'e' a column of stringsdf['e'] = df['e'].astype(str) Save to csvdf.to_csv('df.csv') Convert to an xarray's Datasetds = xr.Dataset.from_dataframe(df) Save NetCDF fileds.to_netcdf('ds.nc') Compute statsstats1 = os.stat('df.csv') stats2 = os.stat('ds.nc') print('csv=',str(stats1.st_size)) print('nc =',str(stats2.st_size)) print('nc/csv=',str(stats2.st_size/stats1.st_size)) ``` The result: ```
Problem descriptionNetCDF can store numerical data, as well as some other data, such as categorical data, in a much more efficient way than CSV, do to it's ability to store numbers (integers, limited precision floats) in smaller encodings (e.g. 8 bit integers), as well as it's ability to compress data using zlib. The answers in the stack exchange link at the top of the page give some examples of how this can be done. The second one is particularly useful, and it would be nice if xarray provided an Expected OutputNetCDF from should be equal to or smaller than a CSV full of numerical data in most cases. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2780/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);