issues
1 row where comments = 35 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 179052741 | MDExOlB1bGxSZXF1ZXN0ODY2MzEwNTE= | 1017 | WIP: Optional indexes (no more default coordinates given by range(n)) | shoyer 1217238 | closed | 0 | 35 | 2016-09-24T21:24:39Z | 2017-01-16T01:27:34Z | 2016-12-15T02:40:35Z | MEMBER | 0 | pydata/xarray/pulls/1017 | Fixes #283 MotivationCurrently, when a Dataset or DataArray is created without explicit coordinate labels for a dimension, we insert a coordinate with the values given by range(n). This is problematic, for two main reasons: 1. There aren't always meaningful dimension labels. For example, an RGB image might represented by a DataArray with three dimensions ('row', 'column', 'channel'). 'row' and 'column' each have fixed size, but only channel has meaningful labels ['red', 'green', 'blue']. 2. Default labels lead to bad default alignment behavior. In the RGB image example, when I combine a 200x200 pixel image with a 300x300 pixel image, xarray would currently align rows and columns into a 200x200 image. This isn't desirable -- you'd rather get an error than use default labels for alignment. As is, xarray isn't a good fit for users who don't have meaningful coordinate labels over one or more dimensions. So making labels optional would also increase the audience for the project. Design decisionsIn general, I have followed the alignment rules I suggested for pandas in https://github.com/pydata/pandas-design/issues/17, but there are still some xarray specific design decisions to resolve:
- [x] ~~How to handle Examples of new behavior``` In [1]: import xarray as xr In [2]: a = xr.DataArray([1, 2, 3], dims='x') In [3]: b = xr.DataArray([[1, 2], [3, 4], [5, 6]], dims=['x', 'y'], coords={'y': ['a', 'b']}) In [4]: a Out[4]: <xarray.DataArray (x: 3)> array([1, 2, 3]) In [5]: b Out[5]: <xarray.DataArray (x: 3, y: 2)> array([[1, 2], [3, 4], [5, 6]]) Coordinates: * y (y) <U1 'a' 'b' In [6]: a + b Out[6]: <xarray.DataArray (x: 3, y: 2)> array([[2, 3], [5, 6], [8, 9]]) Coordinates: * y (y) <U1 'a' 'b' In [7]: c = xr.DataArray([1, 2], dims='x') In [8]: a + c ValueError: dimension 'x' without indexes cannot be aligned because it has different sizes: {2, 3} In [9]: d = xr.DataArray([1, 2, 3], coords={'x': [10, 20, 30]}, dims='x') indexes are copied from the argument with labels if they have the same sizeIn [10]: a + d Out[10]: <xarray.DataArray (x: 3)> array([2, 4, 6]) Coordinates: * x (x) int64 10 20 30 ``` New doc sections
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/1017/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);
