home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

6 rows where comments = 3, state_reason = "completed" and user = 35968931 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 1

  • issue 6

state 1

  • closed 6

repo 1

  • xarray 6
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
2098882374 I_kwDOAMm_X859GmdG 8660 dtype encoding ignored during IO? TomNicholas 35968931 closed 0     3 2024-01-24T18:50:47Z 2024-02-05T17:35:03Z 2024-02-05T17:35:02Z MEMBER      

What happened?

When I set the .encoding['dtype'] attribute before saving a to disk, the actual on-disk representation appears to store a record of the dtype encoding, but when opening it back up in xarray I get the same dtype I had before, not the one specified in the encoding. Is that what's supposed to happen? How does this work? (This happens with both zarr and netCDF.)

What did you expect to happen?

I expected that setting .encoding['dtype'] would mean that once I open the data back up, it would be in the new dtype that I set in the encoding.

Minimal Complete Verifiable Example

```Python air = xr.tutorial.open_dataset('air_temperature')

air['air'].dtype # returns dtype('float32')

air['air'].encoding['dtype'] # returns dtype('int16'), which already seems weird

air.to_zarr('air.zarr') # I would assume here that the encoding actually does something during IO

now if I check the zarr .zarray metadata for the air variable it says

"dtype":"<i2"`

air2 = xr.open_dataset('air.zarr', engine='zarr') # open it back up

air2['air'].dtype # returns dtype('float32'), but I expected dtype('int16')

(the same thing happens also with saving to netCDF instead of Zarr) ```

MVCE confirmation

  • [X] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • [X] Complete example — the example is self-contained, including all data and the text of any traceback.
  • [X] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • [X] New issue — a search of GitHub Issues suggests this is not a duplicate.
  • [X] Recent environment — the issue occurs with the latest version of xarray and its dependencies.

Relevant log output

No response

Anything else we need to know?

I know I didn't explicitly cast with .asdtype, but I'm still confused as to what the relation between the dtype encoding is supposed to be here.

I am probably just misunderstanding how this is supposed to work, but then this is arguably a docs issue, because here it says "[the encoding dtype field] controls the type of the data written on disk", which I would have thought also affects the data you get back when you open it up again?

Environment

main branch of xarray

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8660/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
663235664 MDU6SXNzdWU2NjMyMzU2NjQ= 4243 Manually drop DataArray from memory? TomNicholas 35968931 closed 0     3 2020-07-21T18:54:40Z 2023-09-12T16:17:12Z 2023-09-12T16:17:12Z MEMBER      

Is it possible to deliberately drop data associated with a particular DataArray from memory?

Obviously da.close() exists, but what happens if you did for example python ds = open_dataset(file) da = ds[var] da.compute() # something that loads da into memory da.close() # is the memory freed up again now? ds.something() # what about now?

Also does calling python's built-in garbage collector (i.e. gc.collect()) do anything in this instance?

The context of this question is that I'm trying to resave some massive variables (~65GB each) that were loaded from thousands of files into just a few files for each variable. I would love to use @rabernat 's new rechunker package but I'm not sure how easily I can convert my current netCDF data to Zarr, and I'm interested in this question no matter how I end up solving the problem.

I don't currently have a particularly good understanding of file I/O and memory management in xarray, but would like to improve it. Can anyone recommend a tool I can use to answer this kind of question myself on my own machine? I suppose it would need to be able to tell me the current memory usage of specific objects, not just the total memory usage.

(@johnomotani you might be interested)

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4243/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
1807782455 I_kwDOAMm_X85rwJI3 7996 Stable docs build not showing latest changes after release TomNicholas 35968931 closed 0     3 2023-07-17T13:24:58Z 2023-07-17T20:48:19Z 2023-07-17T20:48:19Z MEMBER      

What happened?

I released xarray version v2023.07.0 last night, but I'm not seeing changes to the documentation reflected in the https://docs.xarray.dev/en/stable/ build. (In particular the Internals section now should have an entire extra page on wrapping chunked arrays.) I can however see the newest additions on https://docs.xarray.dev/en/latest/ build. Is that how it's supposed to work?

What did you expect to happen?

No response

Minimal Complete Verifiable Example

No response

MVCE confirmation

  • [ ] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • [ ] Complete example — the example is self-contained, including all data and the text of any traceback.
  • [ ] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • [ ] New issue — a search of GitHub Issues suggests this is not a duplicate.

Relevant log output

No response

Anything else we need to know?

No response

Environment

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7996/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
474247717 MDU6SXNzdWU0NzQyNDc3MTc= 3168 apply_ufunc erroneously operating on an empty array when dask used TomNicholas 35968931 closed 0     3 2019-07-29T20:44:23Z 2020-03-30T15:08:16Z 2020-03-30T15:08:15Z MEMBER      

Problem description

apply_ufunc with dask='parallelized' appears to be trying to act on an empty numpy array when the computation is specified, but before .compute() is called. In other words, a ufunc which just prints the shape of its argument will print (0,0) then print the correct shape once .compute() is called.

Minimum working example

```python import numpy as np import xarray as xr

def example_ufunc(x): print(x.shape) return np.mean(x, axis=-1)

def new_mean(da, dim): result = xr.apply_ufunc(example_ufunc, da, input_core_dims=[[dim]], dask='parallelized', output_dtypes=[da.dtype]) return result

shape = {'t': 2, 'x':3} data = xr.DataArray(data=np.random.rand(*shape.values()), dims=shape.keys()) unchunked = data chunked = data.chunk(shape)

actual = new_mean(chunked, dim='x') # raises the warning print(actual)

print(actual.compute()) # does the computation correctly ```

Result

(0, 0) /home/tnichol/anaconda3/envs/py36/lib/python3.6/site-packages/numpy/core/fromnumeric.py:3118: RuntimeWarning: Mean of empty slice. out=out, **kwargs) <xarray.DataArray (t: 2)> dask.array<shape=(2,), dtype=float64, chunksize=(2,)> Dimensions without coordinates: t (2, 3) <xarray.DataArray (t: 2)> array([0.147205, 0.402913]) Dimensions without coordinates: t

Expected result

Same thing without the (0,0) or the numpy warning.

Output of xr.show_versions()

(my xarray is up-to-date with master)

INSTALLED VERSIONS ------------------ commit: None python: 3.6.6 |Anaconda, Inc.| (default, Oct 9 2018, 12:34:16) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-862.14.4.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 libhdf5: 1.10.2 libnetcdf: 4.6.1 xarray: 0.12.3+23.g1d7bcbd pandas: 0.24.2 numpy: 1.16.4 scipy: 1.3.0 netCDF4: 1.4.2 pydap: None h5netcdf: None h5py: 2.8.0 Nio: None zarr: None cftime: 1.0.3.4 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.1 dask: 2.1.0 distributed: 2.1.0 matplotlib: 3.1.0 cartopy: None seaborn: 0.9.0 numbagg: None setuptools: 40.6.2 pip: 18.1 conda: None pytest: 4.0.0 IPython: 7.1.1 sphinx: 1.8.2
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3168/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
497184021 MDU6SXNzdWU0OTcxODQwMjE= 3334 plot.line fails when plot axis is a 1D coordinate TomNicholas 35968931 closed 0     3 2019-09-23T15:52:48Z 2019-09-26T08:51:59Z 2019-09-26T08:51:59Z MEMBER      

MCVE Code Sample

```python import xarray as xr import numpy as np

x_coord = xr.DataArray(data=[0.1, 0.2], dims=['x']) t_coord = xr.DataArray(data=[10, 20], dims=['t'])

da = xr.DataArray(data=np.array([[0, 1], [5, 9]]), dims=['x', 't'], coords={'x': x_coord, 'time': t_coord}) print(da)

da.transpose('time', 'x') Output: <xarray.DataArray (x: 2, t: 2)> array([[0, 1], [5, 9]]) Coordinates: * x (x) float64 0.1 0.2 time (t) int64 10 20

Traceback (most recent call last): File "mwe.py", line 22, in <module> da.transpose('time', 'x') File "/home/tegn500/Documents/Work/Code/xarray/xarray/core/dataarray.py", line 1877, in transpose "permuted array dimensions (%s)" % (dims, tuple(self.dims)) ValueError: arguments to transpose (('time', 'x')) must be permuted array dimensions (('x', 't')) ```

As 'time' is a coordinate with only one dimension, this is an unambiguous operation that I want to perform. However, because .transpose() currently only accepts dimensions, this fails with that error.

This causes bug in other parts of the code - for example I found this by trying to plot this type of dataarray: python da.plot(x='time', hue='x') which gives the same error.

(You can get a similar error also with da.plot(y='time', hue='x').)

If the code which explicitly checks that the arguments to transpose are dims and not just coordinate dimensions is removed, then both of these examples work as expected.

I would like to generalise the transpose function to also accept dimension coordinates, is there any reason not to do this?

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3334/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
404383025 MDU6SXNzdWU0MDQzODMwMjU= 2725 Line plot with x=coord putting wrong variables on axes TomNicholas 35968931 closed 0     3 2019-01-29T16:43:18Z 2019-01-30T02:02:22Z 2019-01-30T02:02:22Z MEMBER      

When I try to plot the values in a 1D DataArray against the values in one of its coordinates, it does not behave at all as expected:

```python import numpy as np import matplotlib.pyplot as plt from xarray import DataArray

current = DataArray(name='current', data=np.array([5, 8, 14, 22, 30]), dims=['time'], coords={'time': (['time'], np.array([0.1, 0.2, 0.3, 0.4, 0.5])), 'voltage': (['time'], np.array([100, 200, 300, 400, 500]))})

print(current)

Try to plot current against voltage

current.plot.line(x='voltage') plt.show() ``` Output:

<xarray.DataArray 'current' (time: 5)> array([ 5, 8, 14, 22, 30]) Coordinates: * time (time) float64 0.1 0.2 0.3 0.4 0.5 voltage (time) int64 100 200 300 400 500

Problem description

Not only is 'voltage' not on the x axis, but 'current' isn't on the y axis either!

Expected Output

Based on the documentation (and common sense) I would have expected it to plot voltage on the x axis and current on the y axis.

(using a branch of xarray which is up-to-date with master)

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/2725/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 3841.68ms · About: xarray-datasette