issues
43 rows where comments = 3, repo = 13221727 and user = 2448579 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1989227042 | PR_kwDOAMm_X85fObtL | 8445 | Pin pint to >=0.22 | dcherian 2448579 | closed | 0 | 3 | 2023-11-12T03:58:40Z | 2023-11-13T19:39:54Z | 2023-11-13T19:39:53Z | MEMBER | 0 | pydata/xarray/pulls/8445 |
We were previously pinned to |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8445/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1952621896 | I_kwDOAMm_X850YqVI | 8337 | Support rolling with numbagg | dcherian 2448579 | open | 0 | 3 | 2023-10-19T16:11:40Z | 2023-10-23T15:46:36Z | MEMBER | Is your feature request related to a problem?We can do plain reductions, and groupby reductions with numbagg. Rolling is the last one left! I don't think coarsen will benefit since it's basically a reshape and reduce on that view, so it should already be accelerated. There may be small gains in handling the boundary conditions but that's probably it. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8337/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1944347086 | PR_kwDOAMm_X85c2nyz | 8316 | Enable numbagg for reductions | dcherian 2448579 | closed | 0 | 3 | 2023-10-16T04:46:10Z | 2023-10-18T14:54:48Z | 2023-10-18T10:39:30Z | MEMBER | 0 | pydata/xarray/pulls/8316 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8316/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1736542260 | PR_kwDOAMm_X85R6fac | 7888 | Add cfgrib,ipywidgets to doc env | dcherian 2448579 | closed | 0 | 3 | 2023-06-01T15:11:10Z | 2023-06-16T14:14:01Z | 2023-06-16T14:13:59Z | MEMBER | 0 | pydata/xarray/pulls/7888 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7888/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1689773381 | PR_kwDOAMm_X85PctlP | 7798 | Fix groupby binary ops when grouped array is subset relative to other | dcherian 2448579 | closed | 0 | 3 | 2023-04-30T04:14:14Z | 2023-05-03T12:58:35Z | 2023-05-02T14:48:42Z | MEMBER | 0 | pydata/xarray/pulls/7798 |
cc @slevang |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7798/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1632422255 | PR_kwDOAMm_X85Md6iW | 7650 | Pin pandas < 2 | dcherian 2448579 | closed | 0 | 3 | 2023-03-20T16:03:58Z | 2023-04-25T13:42:48Z | 2023-03-22T14:53:53Z | MEMBER | 0 | pydata/xarray/pulls/7650 | Pandas is expecting to release v2 in two weeks (pandas-dev/pandas#46776 (comment)). But we are still incompatible with their main branch: - #7441 - #7420 This PR pins pandas to |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7650/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1610063645 | PR_kwDOAMm_X85LTHGz | 7586 | Fix lazy negative slice rewriting. | dcherian 2448579 | closed | 0 | 3 | 2023-03-05T05:31:17Z | 2023-03-27T21:05:54Z | 2023-03-27T21:05:51Z | MEMBER | 0 | pydata/xarray/pulls/7586 | There was a bug in estimating the last index of the slice. Index a range object instead.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7586/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1573030587 | PR_kwDOAMm_X85JXRu7 | 7506 | Fix whats-new for 2023.02.0 | dcherian 2448579 | closed | 0 | 3 | 2023-02-06T18:01:17Z | 2023-02-07T16:14:55Z | 2023-02-07T16:14:51Z | MEMBER | 0 | pydata/xarray/pulls/7506 | Oops. I used "Github Codespaces" to edit whats-new, but it turns if you commit in there, it just commits to main! This fixes the pre-commit error. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7506/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1433815234 | PR_kwDOAMm_X85CF7j3 | 7249 | whats-new for 2022.11.0 | dcherian 2448579 | closed | 0 | 3 | 2022-11-02T21:35:13Z | 2022-11-04T20:43:02Z | 2022-11-04T20:43:00Z | MEMBER | 0 | pydata/xarray/pulls/7249 | { "url": "https://api.github.com/repos/pydata/xarray/issues/7249/reactions", "total_count": 3, "+1": 0, "-1": 0, "laugh": 0, "hooray": 3, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
1333514579 | I_kwDOAMm_X85Pe9FT | 6902 | Flox based groupby operations don't support `dtype` in mean method | dcherian 2448579 | closed | 0 | 3 | 2022-08-09T16:38:25Z | 2022-10-11T17:45:27Z | 2022-10-11T17:45:27Z | MEMBER | Discussed in https://github.com/pydata/xarray/discussions/6901
<sup>Originally posted by **tasansal** August 9, 2022</sup>
We have been using the new groupby logic with Flox and numpy_groupies; however, when we run the following, the dtype is not recognized as a valid argument.
This breaks API compatibility for cases where you may not have the acceleration libraries installed.
Not sure if this has to be upstream in
In addition to base Xarray we have the following extras installed:
Flox
numpy_groupies
Bottleneck
We do this because our data is `float32` but we want the accumulator in mean to be `float64` for accuracy.
One solution is to cast the variable to float64 before mean, which may cause a copy and spike in memory usage.
When Flox and numpy_groupies are not installed, it works as expected.
We are working with multi-dimensional time-series of weather forecast models.
```python
da = xr.load_mfdataset(...)
da.groupby("time.month").mean(dtype='float64').compute()
```
Here is the end of the traceback and it appears it is on Flox.
```shell
File "/home/altay_sansal_tgs_com/miniconda3/envs/wind-data-mos/lib/python3.10/site-packages/flox/core.py", line 786, in _aggregate
return _finalize_results(results, agg, axis, expected_groups, fill_value, reindex)
File "/home/altay_sansal_tgs_com/miniconda3/envs/wind-data-mos/lib/python3.10/site-packages/flox/core.py", line 747, in _finalize_results
finalized[agg.name] = agg.finalize(*squeezed["intermediates"], **agg.finalize_kwargs)
TypeError: <lambda>() got an unexpected keyword argument 'dtype'
```
What is the best way to handle this, maybe fix it in Flox? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6902/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1217509109 | PR_kwDOAMm_X8424hSf | 6525 | Add cumsum to DatasetGroupBy | dcherian 2448579 | closed | 0 | 3 | 2022-04-27T15:19:20Z | 2022-07-20T01:31:41Z | 2022-07-20T01:31:37Z | MEMBER | 0 | pydata/xarray/pulls/6525 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6525/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1298145215 | I_kwDOAMm_X85NYB-_ | 6763 | Map_blocks should raise nice error if provided template has no dask arrays | dcherian 2448579 | closed | 0 | 3 | 2022-07-07T21:58:06Z | 2022-07-14T17:42:26Z | 2022-07-14T17:42:26Z | MEMBER | Discussed in https://github.com/pydata/xarray/discussions/6762
<sup>Originally posted by **tlsw231** July 7, 2022</sup>
I am trying to use `map_blocks` to: ingest a multi-dimensional array as input, reduce along one dimension and add extra dimensions to the output. Is this possible? I am attaching a simple MRE below that gives me an `zip argument #2 must support iteration` error. Any pointers on what I might be doing wrong?
[My real example is a 3d-dataset with `(time,lat,lon)` dimensions and I am trying to reduce along `time` while adding two new dimensions to the output. I tried so many things and got so many errors, including the one in the title, that I thought it is better to first understand how `map_blocks` works!]
```
# The goal is to feed in a 2d array, reduce along one dimension and add two new dimensions to the output.
chunks={}
dummy = xr.DataArray(data=np.random.random([8,100]),dims=['dim1','dim2']).chunk(chunks)
def some_func(func):
dims=func.dims
n1 = len(func[func.dims[1]]) # This is 'dim2', we will average along 'dim1' below in the for loop
newdim1 = 2; newdim2 = 5;
output = xr.DataArray(np.nan*np.ones([n1,newdim1,newdim2]),dims=[dims[1],'new1','new2'])
for n in range(n1):
fmean = func.isel(dim2=n).mean(dims[0]).compute()
for i in range(newdim1):
for j in range(newdim2):
output[n,i,j] = fmean
return output
#out = some_func(dummy) # This works
template=xr.DataArray(np.nan*np.ones([len(dummy.dim2),2,5]),
dims=['dim2','new1','new2'])
out = xr.map_blocks(some_func,dummy,template=template).compute() # gives me the error message in the title
```
[Edit: Fixed a typo in the `n1 = len(func[func.dims[1]])` line, of course getting the same error.] |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6763/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1189140909 | I_kwDOAMm_X85G4Nmt | 6434 | concat along dim with mix of scalar coordinate and array coordinates is not right | dcherian 2448579 | closed | 0 | 3 | 2022-04-01T02:29:16Z | 2022-04-06T01:19:47Z | 2022-04-06T01:19:47Z | MEMBER | What happened?Really hard to describe in words =)
fails when cc @benbovy What did you expect to happen?No response Minimal Complete Verifiable Example```Python import numpy as np import xarray as xr time = xr.DataArray( np.array( ["2013-01-01T00:00:00.000000000", "2013-01-01T06:00:00.000000000"], dtype="datetime64[ns]", ), dims="time", name="time", ) da = time concat = xr.concat([da.isel(time=0), da.isel(time=[1])], dim="time") xr.align(da, concat, join="exact") # works da = xr.DataArray(np.ones(time.shape), dims="time", coords={"time": time}) concat = xr.concat([da.isel(time=0), da.isel(time=[1])], dim="time") xr.align(da, concat, join="exact") ``` Relevant log output```ValueError Traceback (most recent call last) Input In [27], in <module> 17 da = xr.DataArray(np.ones(time.shape), dims="time", coords={"time": time}) 18 concat = xr.concat([da.isel(time=0), da.isel(time=[1])], dim="time") ---> 19 xr.align(da, concat, join="exact") File ~/work/python/xarray/xarray/core/alignment.py:761, in align(join, copy, indexes, exclude, fill_value, *objects) 566 """ 567 Given any number of Dataset and/or DataArray objects, returns new 568 objects with aligned indexes and dimension sizes. (...) 751 752 """ 753 aligner = Aligner( 754 objects, 755 join=join, (...) 759 fill_value=fill_value, 760 ) --> 761 aligner.align() 762 return aligner.results File ~/work/python/xarray/xarray/core/alignment.py:549, in Aligner.align(self) 547 self.find_matching_unindexed_dims() 548 self.assert_no_index_conflict() --> 549 self.align_indexes() 550 self.assert_unindexed_dim_sizes_equal() 552 if self.join == "override": File ~/work/python/xarray/xarray/core/alignment.py:395, in Aligner.align_indexes(self) 393 if need_reindex: 394 if self.join == "exact": --> 395 raise ValueError( 396 "cannot align objects with join='exact' where " 397 "index/labels/sizes are not equal along " 398 "these coordinates (dimensions): " 399 + ", ".join(f"{name!r} {dims!r}" for name, dims in key[0]) 400 ) 401 joiner = self._get_index_joiner(index_cls) 402 joined_index = joiner(matching_indexes) ValueError: cannot align objects with join='exact' where index/labels/sizes are not equal along these coordinates (dimensions): 'time' ('time',) ``` Anything else we need to know?No response Environmentxarray main |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6434/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1171932478 | I_kwDOAMm_X85F2kU- | 6373 | Zarr backend should avoid checking for invalid encodings | dcherian 2448579 | closed | 0 | 3 | 2022-03-17T04:55:35Z | 2022-03-18T10:06:01Z | 2022-03-18T04:19:48Z | MEMBER | What is your issue?The zarr backend has a list of "valid" encodings that needs to be updated any time zarr adds something new (e.g. https://github.com/pydata/xarray/pull/6348) Can we get rid of this? I don't know the backends code well, but won't all our encoding parameters have been removed by this stage? The @tomwhite points out that zarr will raise a warning: ``` python
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6373/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1167962844 | PR_kwDOAMm_X840X9mp | 6353 | Add new tutorial video | dcherian 2448579 | closed | 0 | 3 | 2022-03-14T06:54:37Z | 2022-03-16T03:52:54Z | 2022-03-16T03:49:23Z | MEMBER | 0 | pydata/xarray/pulls/6353 | { "url": "https://api.github.com/repos/pydata/xarray/issues/6353/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
1038407848 | PR_kwDOAMm_X84tyqLp | 5904 | Update docstring for apply_ufunc, set_options | dcherian 2448579 | closed | 0 | 3 | 2021-10-28T11:33:03Z | 2021-10-30T14:10:24Z | 2021-10-30T14:10:23Z | MEMBER | 0 | pydata/xarray/pulls/5904 | { "url": "https://api.github.com/repos/pydata/xarray/issues/5904/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
922792799 | MDExOlB1bGxSZXF1ZXN0NjcxNjI1NDc3 | 5474 | Refactor out coarsen tests | dcherian 2448579 | closed | 0 | 3 | 2021-06-16T15:52:57Z | 2021-06-21T17:04:02Z | 2021-06-21T16:35:36Z | MEMBER | 0 | pydata/xarray/pulls/5474 |
Some questions:
1. flake8 fails with some false positives. What do we do about that?
2. I am importing the
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5474/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
501108453 | MDU6SXNzdWU1MDExMDg0NTM= | 3363 | user-friendly additions for dask usage | dcherian 2448579 | closed | 0 | 3 | 2019-10-01T19:48:27Z | 2021-04-19T03:34:18Z | 2021-04-19T03:34:18Z | MEMBER | Any thoughts on adding
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3363/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
694182591 | MDExOlB1bGxSZXF1ZXN0NDgwNTk3OTk3 | 4407 | Dataset.plot.quiver | dcherian 2448579 | closed | 0 | 3 | 2020-09-05T21:04:05Z | 2021-02-19T14:21:47Z | 2021-02-19T14:21:45Z | MEMBER | 0 | pydata/xarray/pulls/4407 |
I could use some help with adding tests and parameter checking if someone wants to help :) ``` python import numpy as np import xarray as xr ds = xr.Dataset() ds.coords["x"] = ("x", np.arange(10)) ds.coords["y"] = ("y", np.arange(20)) ds.coords["t"] = ("t", np.arange(4)) ds["u"] = np.sin((ds.x - 5) / 5) * np.sin((ds.y - 10) / 10) ds["v"] = np.sin((ds.x - 5) / 5) * np.cos((ds.y - 10) / 10) ds = ds * 2*np.cos((ds.t) * 2 * 3.14 /0.75) ds["u"].attrs["units"] = "m/s" ds["mag"] = np.hypot(ds.u, ds.v) ds.mag.plot(col="t", x="x") fg = ds.plot.quiver(x="x", y="y", u="u", v="v", col="t", hue="mag") ```
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4407/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
685825824 | MDU6SXNzdWU2ODU4MjU4MjQ= | 4376 | wrong chunk sizes in html repr with nonuniform chunks | dcherian 2448579 | open | 0 | 3 | 2020-08-25T21:23:11Z | 2020-10-07T11:11:23Z | MEMBER | What happened: The HTML repr is using the first element in a chunks tuple; What you expected to happen: it should be using whatever dask does in this case Minimal Complete Verifiable Example: ```python import xarray as xr import dask test = xr.DataArray( dask.array.zeros( (12, 901, 1001), chunks=( (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (1, 899, 1), (1, 199, 1, 199, 1, 199, 1, 199, 1, 199, 1), ), ) ) test.to_dataset(name="a") ``` EDIT: The text repr has the same issue
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4376/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
623230375 | MDExOlB1bGxSZXF1ZXN0NDIxOTM3MTk2 | 4088 | Fix conversion of multiindexed pandas objects to sparse xarray objects | dcherian 2448579 | closed | 0 | 3 | 2020-05-22T13:59:21Z | 2020-05-26T22:20:06Z | 2020-05-26T22:20:02Z | MEMBER | 0 | pydata/xarray/pulls/4088 |
~Doesn't have a proper test. Need some help here~. cc @bnaul |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4088/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
589834306 | MDExOlB1bGxSZXF1ZXN0Mzk1MjgyNzg0 | 3915 | facetgrid: Ensure that colormap params are only determined once. | dcherian 2448579 | closed | 0 | 3 | 2020-03-29T16:52:28Z | 2020-04-11T16:12:00Z | 2020-04-11T16:11:53Z | MEMBER | 0 | pydata/xarray/pulls/3915 |
Not sure how to test this. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3915/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
584429748 | MDU6SXNzdWU1ODQ0Mjk3NDg= | 3867 | macos py38 CI failing | dcherian 2448579 | closed | 0 | 3 | 2020-03-19T13:54:10Z | 2020-03-29T22:13:26Z | 2020-03-29T22:13:26Z | MEMBER |
```python E ImportError: dlopen(/usr/local/miniconda/envs/xarray-tests/lib/python3.8/site-packages/PIL/_imaging.cpython-38-darwin.so, 2): Library not loaded: @rpath/libwebp.7.dylib E Referenced from: /usr/local/miniconda/envs/xarray-tests/lib/libtiff.5.dylib E Reason: Incompatible library version: libtiff.5.dylib requires version 9.0.0 or later, but libwebp.7.dylib provides version 8.0.0 /usr/local/miniconda/envs/xarray-tests/lib/python3.8/site-packages/PIL/Image.py:69: ImportError ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3867/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
576912650 | MDExOlB1bGxSZXF1ZXN0Mzg0ODA1NjIy | 3839 | Fix alignment with join="override" when some dims are unindexed | dcherian 2448579 | closed | 0 | 3 | 2020-03-06T12:52:50Z | 2020-03-13T13:59:25Z | 2020-03-13T13:25:13Z | MEMBER | 0 | pydata/xarray/pulls/3839 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3839/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
558241968 | MDExOlB1bGxSZXF1ZXN0MzY5NjY5NTM3 | 3738 | Add twine check and readthedocs reminder to HOW_TO_RELEASE | dcherian 2448579 | closed | 0 | 3 | 2020-01-31T16:43:39Z | 2020-02-24T20:39:03Z | 2020-02-24T18:52:04Z | MEMBER | 0 | pydata/xarray/pulls/3738 | { "url": "https://api.github.com/repos/pydata/xarray/issues/3738/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
538521262 | MDExOlB1bGxSZXF1ZXN0MzUzNjUzNTEz | 3629 | apply_ufunc vectorize 1D function example | dcherian 2448579 | closed | 0 | 3 | 2019-12-16T16:33:36Z | 2020-01-16T18:06:42Z | 2020-01-15T15:25:57Z | MEMBER | 0 | pydata/xarray/pulls/3629 | I added an example on using apply_ufunc to vectorize a 1D example over a DataArray. Comments and feedback welcome. I added an example of using numba's guvectorize too. Thoughts on keeping that bit?
cc @rabernat @TomNicholas |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3629/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
499477368 | MDU6SXNzdWU0OTk0NzczNjg= | 3350 | assert_equal and dask | dcherian 2448579 | closed | 0 | 3 | 2019-09-27T14:25:14Z | 2020-01-10T16:10:57Z | 2020-01-10T16:10:57Z | MEMBER | MCVE Code SampleExample 1```python import xarray as xr import numpy as np da = xr.DataArray(np.random.randn(10, 20), name="a") ds = da.to_dataset() xr.testing.assert_equal(da, da.chunk({"dim_0": 2})) # works xr.testing.assert_equal(da.chunk(), da.chunk({"dim_0": 2})) # works xr.testing.assert_equal(ds, ds.chunk({"dim_0": 2})) # works xr.testing.assert_equal(ds.chunk(), ds.chunk({"dim_0": 2})) # does not work ``` I get ```ValueError Traceback (most recent call last) <ipython-input-1-bc8216a67408> in <module> 8 9 xr.testing.assert_equal(ds, ds.chunk({"dim_0": 2})) # works ---> 10 xr.testing.assert_equal(ds.chunk(), ds.chunk({"dim_0": 2})) # does not work ~/work/python/xarray/xarray/testing.py in assert_equal(a, b) 56 assert a.equals(b), formatting.diff_array_repr(a, b, "equals") 57 elif isinstance(a, Dataset): ---> 58 assert a.equals(b), formatting.diff_dataset_repr(a, b, "equals") 59 else: 60 raise TypeError("{} not supported by assertion comparison".format(type(a))) ~/work/python/xarray/xarray/core/dataset.py in equals(self, other) 1322 """ 1323 try: -> 1324 return self._all_compat(other, "equals") 1325 except (TypeError, AttributeError): 1326 return False ~/work/python/xarray/xarray/core/dataset.py in _all_compat(self, other, compat_str) 1285 1286 return self._coord_names == other._coord_names and utils.dict_equiv( -> 1287 self._variables, other._variables, compat=compat 1288 ) 1289 ~/work/python/xarray/xarray/core/utils.py in dict_equiv(first, second, compat) 335 """ 336 for k in first: --> 337 if k not in second or not compat(first[k], second[k]): 338 return False 339 for k in second: ~/work/python/xarray/xarray/core/dataset.py in compat(x, y) 1282 # require matching order for equality 1283 def compat(x: Variable, y: Variable) -> bool: -> 1284 return getattr(x, compat_str)(y) 1285 1286 return self._coord_names == other._coord_names and utils.dict_equiv( ~/work/python/xarray/xarray/core/variable.py in equals(self, other, equiv) 1558 try: 1559 return self.dims == other.dims and ( -> 1560 self._data is other._data or equiv(self.data, other.data) 1561 ) 1562 except (TypeError, AttributeError): ~/work/python/xarray/xarray/core/duck_array_ops.py in array_equiv(arr1, arr2) 201 warnings.filterwarnings("ignore", "In the future, 'NAT == x'") 202 flag_array = (arr1 == arr2) | (isnull(arr1) & isnull(arr2)) --> 203 return bool(flag_array.all()) 204 205 ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/array/core.py in bool(self) 1380 ) 1381 else: -> 1382 return bool(self.compute()) 1383 1384 nonzero = bool # python 2 ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/base.py in compute(self, kwargs) 173 dask.base.compute 174 """ --> 175 (result,) = compute(self, traverse=False, kwargs) 176 return result 177 ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/base.py in compute(args, kwargs) 444 keys = [x.dask_keys() for x in collections] 445 postcomputes = [x.dask_postcompute() for x in collections] --> 446 results = schedule(dsk, keys, kwargs) 447 return repack([f(r, a) for r, (f, a) in zip(results, postcomputes)]) 448 ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/threaded.py in get(dsk, result, cache, num_workers, pool, kwargs) 80 get_id=_thread_get_id, 81 pack_exception=pack_exception, ---> 82 kwargs 83 ) 84 ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/local.py in get_async(apply_async, num_workers, dsk, result, cache, get_id, rerun_exceptions_locally, pack_exception, raise_exception, callbacks, dumps, loads, **kwargs) 489 _execute_task(task, data) # Re-execute locally 490 else: --> 491 raise_exception(exc, tb) 492 res, worker_id = loads(res_info) 493 state["cache"][key] = res ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/compatibility.py in reraise(exc, tb) 128 if exc.traceback is not tb: 129 raise exc.with_traceback(tb) --> 130 raise exc 131 132 import pickle as cPickle ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/local.py in execute_task(key, task_info, dumps, loads, get_id, pack_exception) 231 try: 232 task, data = loads(task_info) --> 233 result = _execute_task(task, data) 234 id = get_id() 235 result = dumps((result, id)) ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/core.py in _execute_task(arg, cache, dsk) 117 func, args = arg[0], arg[1:] 118 args2 = [_execute_task(a, cache) for a in args] --> 119 return func(*args2) 120 elif not ishashable(arg): 121 return arg ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/optimization.py in call(self, *args) 1057 if not len(args) == len(self.inkeys): 1058 raise ValueError("Expected %d args, got %d" % (len(self.inkeys), len(args))) -> 1059 return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args))) 1060 1061 def reduce(self): ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/core.py in get(dsk, out, cache) 147 for key in toposort(dsk): 148 task = dsk[key] --> 149 result = _execute_task(task, cache) 150 cache[key] = result 151 result = _execute_task(out, cache) ~/miniconda3/envs/dcpy/lib/python3.7/site-packages/dask/core.py in _execute_task(arg, cache, dsk) 117 func, args = arg[0], arg[1:] 118 args2 = [_execute_task(a, cache) for a in args] --> 119 return func(*args2) 120 elif not ishashable(arg): 121 return arg ValueError: operands could not be broadcast together with shapes (0,20) (2,20) ``` Example 2The relevant xarray line in the previous traceback is
```ValueError Traceback (most recent call last) <ipython-input-4-abdfbeda355a> in <module> 1 (ds.isnull() & ds.chunk({"dim_0": 1}).isnull()).compute() # works ----> 2 (ds.chunk().isnull() & ds.chunk({"dim_0": 1}).isnull()).compute() # does not work?! ~/work/python/xarray/xarray/core/dataset.py in compute(self, kwargs) 791 """ 792 new = self.copy(deep=False) --> 793 return new.load(kwargs) 794 795 def _persist_inplace(self, **kwargs) -> "Dataset": ~/work/python/xarray/xarray/core/dataset.py in load(self, **kwargs) 645 646 for k, data in zip(lazy_data, evaluated_data): --> 647 self.variables[k].data = data 648 649 # load everything else sequentially ~/work/python/xarray/xarray/core/variable.py in data(self, data) 331 data = as_compatible_data(data) 332 if data.shape != self.shape: --> 333 raise ValueError("replacement data must match the Variable's shape") 334 self._data = data 335 ValueError: replacement data must match the Variable's shape ``` Problem DescriptionI don't know what's going on here. I expect assert_equal should return True for all these examples. Our test for
Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3350/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
452629448 | MDU6SXNzdWU0NTI2Mjk0NDg= | 2999 | median on dask arrays | dcherian 2448579 | closed | 0 | 3 | 2019-06-05T17:37:46Z | 2019-12-30T17:46:44Z | 2019-12-30T17:46:44Z | MEMBER | Dask has updated it's percentile, quantile implementation: https://github.com/dask/dask/pull/4677 Can we now update our median method to work with dask arrays? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2999/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
513068398 | MDExOlB1bGxSZXF1ZXN0MzMyOTI3ODIy | 3453 | Optimize dask array equality checks. | dcherian 2448579 | closed | 0 | 3 | 2019-10-28T02:44:14Z | 2019-11-05T15:41:22Z | 2019-11-05T15:41:15Z | MEMBER | 0 | pydata/xarray/pulls/3453 | Dask arrays with the same graph have the same name. We can use this to quickly compare dask-backed variables without computing. (see https://github.com/pydata/xarray/issues/3068#issuecomment-508853564) I will work on adding extra tests but could use feedback on the approach.
@djhoese, thanks for the great example code! |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3453/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
501150299 | MDExOlB1bGxSZXF1ZXN0MzIzNDgwMDky | 3364 | Make concat more forgiving with variables that are being merged. | dcherian 2448579 | closed | 0 | 3 | 2019-10-01T21:15:54Z | 2019-10-17T01:30:32Z | 2019-10-14T18:06:54Z | MEMBER | 0 | pydata/xarray/pulls/3364 |
Downstream issue: https://github.com/marbl-ecosys/cesm2-marbl/issues/1 Basically, we are currently raising an error when attempting to merge variables that are present in some datasets but not others that are provided to concat. This seems unnecessarily strict and it turns out we had an issue for it! (#508) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3364/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
501059947 | MDExOlB1bGxSZXF1ZXN0MzIzNDA1OTEz | 3362 | Fix concat bug when concatenating unlabeled dimensions. | dcherian 2448579 | closed | 0 | 3 | 2019-10-01T18:10:22Z | 2019-10-08T22:30:38Z | 2019-10-08T22:13:48Z | MEMBER | 0 | pydata/xarray/pulls/3362 | This fixes the following behaviour. (downstream issue https://github.com/xgcm/xgcm/issues/154)
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3362/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
439407583 | MDExOlB1bGxSZXF1ZXN0Mjc1MjE5ODQ4 | 2934 | Docs/more fixes | dcherian 2448579 | closed | 0 | 3 | 2019-05-02T02:43:29Z | 2019-10-04T19:43:44Z | 2019-10-04T17:04:37Z | MEMBER | 0 | pydata/xarray/pulls/2934 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2934/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
459401826 | MDExOlB1bGxSZXF1ZXN0MjkwNzcxODIx | 3038 | Revert cmap fix | dcherian 2448579 | closed | 0 | 3 | 2019-06-21T23:11:09Z | 2019-08-15T15:32:42Z | 2019-06-22T17:16:36Z | MEMBER | 0 | pydata/xarray/pulls/3038 | Unfortunately my fix in #2935 broke some major functionality. A proper fix would involve some facetgrid refactoring I think; so that'll take some time. This reverts that commit and adds a test.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3038/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
467456554 | MDExOlB1bGxSZXF1ZXN0Mjk3MTA1NDg1 | 3102 | mfdataset, concat now support the 'join' kwarg. | dcherian 2448579 | closed | 0 | 3 | 2019-07-12T14:52:25Z | 2019-08-09T16:55:24Z | 2019-08-07T12:17:07Z | MEMBER | 0 | pydata/xarray/pulls/3102 |
I won't work on it for the next few days if someone else wants to take over... |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3102/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
362918990 | MDExOlB1bGxSZXF1ZXN0MjE3NDk1OTc5 | 2433 | Contour labels kwarg | dcherian 2448579 | closed | 0 | 3 | 2018-09-23T06:52:15Z | 2019-06-13T15:35:44Z | 2019-06-13T15:35:44Z | MEMBER | 0 | pydata/xarray/pulls/2433 |
Adds a
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2433/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
386294605 | MDExOlB1bGxSZXF1ZXN0MjM1MDcxOTQ5 | 2584 | Fix parsing '_Unsigned' attribute | dcherian 2448579 | closed | 0 | 3 | 2018-11-30T18:11:03Z | 2019-04-12T16:29:22Z | 2018-12-15T23:53:19Z | MEMBER | 0 | pydata/xarray/pulls/2584 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2584/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
399042126 | MDU6SXNzdWUzOTkwNDIxMjY= | 2673 | NaT tests need to be fixed on master | dcherian 2448579 | closed | 0 | 3 | 2019-01-14T19:37:45Z | 2019-01-15T16:54:56Z | 2019-01-15T11:19:59Z | MEMBER | ```python =================================== FAILURES =================================== ____ TestVariable.test_index_0d_not_a_time _______ self = <xarray.tests.test_variable.TestVariable object at 0x7f0dd7b6bda0> def test_index_0d_not_a_time(self): d = np.datetime64('NaT', 'ns') x = self.cls(['x'], [d])
self = <xarray.tests.test_variable.TestVariable object at 0x7f0dd7b6bda0> variable = <xarray.Variable (x: 1)> array(['NaT'], dtype='datetime64[ns]') expected_value0 = numpy.datetime64('NaT'), expected_dtype = None def _assertIndexedLikeNDArray(self, variable, expected_value0, expected_dtype=None): """Given a 1-dimensional variable, verify that the variable is indexed like a numpy.ndarray. """ assert variable[0].shape == () assert variable[0].ndim == 0 assert variable[0].size == 1 # test identity assert variable.equals(variable.copy()) assert variable.identical(variable.copy()) # check value is equal for both ndarray and Variable with warnings.catch_warnings(): warnings.filterwarnings('ignore', "In the future, 'NAT == x'")
____ TestVariableWithDask.test_index_0d_not_a_time _____ self = <xarray.tests.test_variable.TestVariableWithDask object at 0x7f0e00bc5978> def test_index_0d_not_a_time(self): d = np.datetime64('NaT', 'ns') x = self.cls(['x'], [d])
self = <xarray.tests.test_variable.TestVariableWithDask object at 0x7f0e00bc5978> variable = <xarray.Variable (x: 1)> dask.array<shape=(1,), dtype=datetime64[ns], chunksize=(1,)> expected_value0 = numpy.datetime64('NaT'), expected_dtype = None def _assertIndexedLikeNDArray(self, variable, expected_value0, expected_dtype=None): """Given a 1-dimensional variable, verify that the variable is indexed like a numpy.ndarray. """ assert variable[0].shape == () assert variable[0].ndim == 0 assert variable[0].size == 1 # test identity assert variable.equals(variable.copy()) assert variable.identical(variable.copy()) # check value is equal for both ndarray and Variable with warnings.catch_warnings(): warnings.filterwarnings('ignore', "In the future, 'NAT == x'")
___ TestIndexVariable.testindex_0d_not_a_time ____ self = <xarray.tests.test_variable.TestIndexVariable object at 0x7f0e01063390> def test_index_0d_not_a_time(self): d = np.datetime64('NaT', 'ns') x = self.cls(['x'], [d])
self = <xarray.tests.test_variable.TestIndexVariable object at 0x7f0e01063390> variable = <xarray.IndexVariable 'x' (x: 1)> array(['NaT'], dtype='datetime64[ns]') expected_value0 = numpy.datetime64('NaT'), expected_dtype = None def _assertIndexedLikeNDArray(self, variable, expected_value0, expected_dtype=None): """Given a 1-dimensional variable, verify that the variable is indexed like a numpy.ndarray. """ assert variable[0].shape == () assert variable[0].ndim == 0 assert variable[0].size == 1 # test identity assert variable.equals(variable.copy()) assert variable.identical(variable.copy()) # check value is equal for both ndarray and Variable with warnings.catch_warnings(): warnings.filterwarnings('ignore', "In the future, 'NAT == x'")
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2673/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
364405781 | MDExOlB1bGxSZXF1ZXN0MjE4NjAwMzM5 | 2443 | Properly support user-provided norm. | dcherian 2448579 | closed | 0 | 3 | 2018-09-27T10:25:33Z | 2018-10-08T05:23:47Z | 2018-10-08T05:23:35Z | MEMBER | 0 | pydata/xarray/pulls/2443 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2443/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
345493321 | MDExOlB1bGxSZXF1ZXN0MjA0NjE5NjY0 | 2328 | Silence some warnings. | dcherian 2448579 | closed | 0 | 3 | 2018-07-29T01:46:27Z | 2018-09-04T15:39:39Z | 2018-09-04T15:39:23Z | MEMBER | 0 | pydata/xarray/pulls/2328 |
Remove some warnings. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2328/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
341713032 | MDExOlB1bGxSZXF1ZXN0MjAxNzg2NDgy | 2294 | Additional axis kwargs | dcherian 2448579 | closed | 0 | 3 | 2018-07-16T23:25:37Z | 2018-07-31T22:28:58Z | 2018-07-31T22:28:44Z | MEMBER | 0 | pydata/xarray/pulls/2294 |
This PR adds support for Haven't added FacetGrid support yet. I'll get to that soon. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2294/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
331387539 | MDU6SXNzdWUzMzEzODc1Mzk= | 2224 | Add axis scaling kwargs to DataArray.plot() | dcherian 2448579 | closed | 0 | 3 | 2018-06-11T23:41:42Z | 2018-07-31T22:28:44Z | 2018-07-31T22:28:44Z | MEMBER | It would be useful to add the boolean kwargs |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2224/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
345426020 | MDExOlB1bGxSZXF1ZXN0MjA0NTgxMDA1 | 2325 | interp() now accepts date strings as desired co-ordinate locations | dcherian 2448579 | closed | 0 | 3 | 2018-07-28T07:14:22Z | 2018-07-30T00:33:13Z | 2018-07-29T06:09:41Z | MEMBER | 0 | pydata/xarray/pulls/2325 |
```python da = xr.DataArray([1, 5], dims=['time'], coords={'time': [np.datetime64('2014-05-06'), np.datetime64('2014-05-10')]}) da.interp(time='2014-05-07')
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2325/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
276185101 | MDExOlB1bGxSZXF1ZXN0MTU0MjQxMDUx | 1737 | WIP: 1d+2d coord plotting | dcherian 2448579 | closed | 0 | 3 | 2017-11-22T19:43:34Z | 2017-12-19T23:49:39Z | 2017-11-29T11:50:09Z | MEMBER | 0 | pydata/xarray/pulls/1737 |
This PR teaches Now we can do Couple of questions:
1. I've added a test, but am not sure how to work in an assert statement.
2. How do I test that I haven't messed up the syntax in |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1737/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);