issues
2 rows where comments = 14, type = "issue" and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 124154674 | MDU6SXNzdWUxMjQxNTQ2NzQ= | 688 | Keep attrs & Add a 'keep_coords' argument to Dataset.apply | max-sixty 5635139 | closed | 0 | 14 | 2015-12-29T02:42:48Z | 2023-09-30T18:47:07Z | 2023-09-30T18:47:07Z | MEMBER | Generally this isn't a problem, since the coords are carried over by the resulting ``` python In [11]: ds = xray.Dataset({ 'a':pd.DataFrame(pd.np.random.rand(10,3)), 'b':pd.Series(pd.np.random.rand(10)) }) ds.coords['c'] = pd.Series(pd.np.random.rand(10)) ds Out[11]: <xray.Dataset> Dimensions: (dim_0: 10, dim_1: 3) Coordinates: * dim_0 (dim_0) int64 0 1 2 3 4 5 6 7 8 9 * dim_1 (dim_1) int64 0 1 2 c (dim_0) float64 0.9318 0.2899 0.3853 0.6235 0.9436 0.7928 ... Data variables: a (dim_0, dim_1) float64 0.5707 0.9485 0.3541 0.5987 0.406 0.7992 ... b (dim_0) float64 0.4106 0.2316 0.5804 0.6393 0.5715 0.6463 ... In [12]: ds.apply(lambda x: x*2) Out[12]: <xray.Dataset> Dimensions: (dim_0: 10, dim_1: 3) Coordinates: c (dim_0) float64 0.9318 0.2899 0.3853 0.6235 0.9436 0.7928 ... * dim_0 (dim_0) int64 0 1 2 3 4 5 6 7 8 9 * dim_1 (dim_1) int64 0 1 2 Data variables: a (dim_0, dim_1) float64 1.141 1.897 0.7081 1.197 0.812 1.598 ... b (dim_0) float64 0.8212 0.4631 1.161 1.279 1.143 1.293 0.3507 ... ``` But if there's an operation that removes the coords from the ``` python In [13]: ds = xray.Dataset({ 'a':pd.DataFrame(pd.np.random.rand(10,3)), 'b':pd.Series(pd.np.random.rand(10)) }) ds.coords['c'] = pd.Series(pd.np.random.rand(10)) ds Out[13]: <xray.Dataset> Dimensions: (dim_0: 10, dim_1: 3) Coordinates: * dim_0 (dim_0) int64 0 1 2 3 4 5 6 7 8 9 * dim_1 (dim_1) int64 0 1 2 c (dim_0) float64 0.4121 0.2507 0.6326 0.4031 0.6169 0.441 0.1146 ... Data variables: a (dim_0, dim_1) float64 0.4813 0.2479 0.5158 0.2787 0.06672 ... b (dim_0) float64 0.2638 0.5788 0.6591 0.7174 0.3645 0.5655 ... In [14]: ds.apply(lambda x: x.to_pandas()*2) Out[14]: <xray.Dataset> Dimensions: (dim_0: 10, dim_1: 3) Coordinates: * dim_0 (dim_0) int64 0 1 2 3 4 5 6 7 8 9 * dim_1 (dim_1) int64 0 1 2 Data variables: a (dim_0, dim_1) float64 0.9627 0.4957 1.032 0.5574 0.1334 0.8289 ... b (dim_0) float64 0.5275 1.158 1.318 1.435 0.7291 1.131 0.1903 ... ``` |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/688/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 587895591 | MDU6SXNzdWU1ODc4OTU1OTE= | 3891 | Keep attrs by default? (keep_attrs) | max-sixty 5635139 | open | 0 | 14 | 2020-03-25T18:17:35Z | 2023-09-22T02:27:50Z | MEMBER | I've held this view in low confidence for a while and wanted to socialize it to see whether there's something to it: Should we keep attrs in operations by default? Advantages:
- I think most of the time people want to keep attrs after operations
- Is that right? Are there cases where it wouldn't be a reasonable default? e.g. good points here for not always keeping coords around
- It's easy to remove them with a (currently unimplemented) Disadvantages:
- Backward incompatible change with an expensive deprecate cycle (would be impractical to have a deprecation warning every time someone ran a function on an object with attrs I think? At least without adding a Here are some existing relevant discussions: - https://github.com/pydata/xarray/issues/3815#issuecomment-603974527 - https://github.com/pydata/xarray/issues/688 - https://github.com/pydata/xarray/pull/2482 - https://github.com/pydata/xarray/issues/3304 I think this is an easy situation to get into: - We make an incorrect-but-insignificant design decision; e.g. some methods don't keep attrs - We want to change that, but avoid breaking backward-compatibility - So we add kwargs and eventually a global config - But now we have a global config that requires global context and lots of kwargs! :( I'm up for leaning towards breaking changes if it makes the library better: I think xarray will grow immensely, and so the narrow immediate pain is worth the broader future positive impact. Clearly if the immediate pain stops xarray growing, then it's not a good tradeoff. |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/3891/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);