issues
7 rows where comments = 12 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 58117200 | MDU6SXNzdWU1ODExNzIwMA== | 324 | Support multi-dimensional grouped operations and group_over | shoyer 1217238 | open | 0 | 1.0 741199 | 12 | 2015-02-18T19:42:20Z | 2022-02-28T19:03:17Z | MEMBER | Multi-dimensional grouped operations should be relatively straightforward -- the main complexity will be writing an N-dimensional concat that doesn't involve repetitively copying data. The idea with Roughly speaking (it's a little more complex for the case of non-dimension variables), Related: #266 |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/324/reactions",
"total_count": 18,
"+1": 18,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | issue | |||||||
| 484622545 | MDU6SXNzdWU0ODQ2MjI1NDU= | 3252 | interp and reindex should work for 1d -> nd indexing | shoyer 1217238 | closed | 0 | 12 | 2019-08-23T16:52:44Z | 2020-03-13T13:58:38Z | 2020-03-13T13:58:38Z | MEMBER | This works with Apparently this is quite important for vertical regridding in weather/climate science (cc @rabernat, @nbren12 ) ``` In [35]: import xarray as xr In [36]: import numpy as np In [37]: data = xr.DataArray(np.arange(12).reshape((3, 4)), [('x', np.arange(3)), ('y', np.arange(4))]) In [38]: ind = xr.DataArray([[0, 2], [1, 0], [1, 2]], dims=['x', 'z'], coords={'x': [0, 1, 2]}) In [39]: data Out[39]: <xarray.DataArray (x: 3, y: 4)> array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) Coordinates: * x (x) int64 0 1 2 * y (y) int64 0 1 2 3 In [40]: ind Out[40]: <xarray.DataArray (x: 3, z: 2)> array([[0, 2], [1, 0], [1, 2]]) Coordinates: * x (x) int64 0 1 2 Dimensions without coordinates: z In [41]: data.isel(y=ind) Out[41]: <xarray.DataArray (x: 3, z: 2)> array([[ 0, 2], [ 5, 4], [ 9, 10]]) Coordinates: * x (x) int64 0 1 2 y (x, z) int64 0 2 1 0 1 2 Dimensions without coordinates: z In [42]: data.sel(y=ind) Out[42]: <xarray.DataArray (x: 3, z: 2)> array([[ 0, 2], [ 5, 4], [ 9, 10]]) Coordinates: * x (x) int64 0 1 2 y (x, z) int64 0 2 1 0 1 2 Dimensions without coordinates: z In [43]: data.interp(y=ind)ValueError Traceback (most recent call last) <ipython-input-43-e6eb7e39fd31> in <module> ----> 1 data.interp(y=ind) ~/dev/xarray/xarray/core/dataarray.py in interp(self, coords, method, assume_sorted, kwargs, coords_kwargs) 1303 kwargs=kwargs, 1304 assume_sorted=assume_sorted, -> 1305 coords_kwargs 1306 ) 1307 return self._from_temp_dataset(ds) ~/dev/xarray/xarray/core/dataset.py in interp(self, coords, method, assume_sorted, kwargs, coords_kwargs) 2455 } 2456 variables[name] = missing.interp( -> 2457 var, var_indexers, method, kwargs 2458 ) 2459 elif all(d not in indexers for d in var.dims): ~/dev/xarray/xarray/core/missing.py in interp(var, indexes_coords, method, *kwargs) 533 else: 534 out_dims.add(d) --> 535 return result.transpose(tuple(out_dims)) 536 537 ~/dev/xarray/xarray/core/variable.py in transpose(self, *dims) 1219 return self.copy(deep=False) 1220 -> 1221 data = as_indexable(self._data).transpose(axes) 1222 return type(self)(dims, data, self._attrs, self._encoding, fastpath=True) 1223 ~/dev/xarray/xarray/core/indexing.py in transpose(self, order) 1218 1219 def transpose(self, order): -> 1220 return self.array.transpose(order) 1221 1222 def getitem(self, key): ValueError: axes don't match array In [44]: data.reindex(y=ind) /Users/shoyer/dev/xarray/xarray/core/dataarray.py:1240: FutureWarning: Indexer has dimensions ('x', 'z') that are different from that to be indexed along y. This will behave differently in the future. fill_value=fill_value, ValueError Traceback (most recent call last) <ipython-input-44-1277ead996ae> in <module> ----> 1 data.reindex(y=ind) ~/dev/xarray/xarray/core/dataarray.py in reindex(self, indexers, method, tolerance, copy, fill_value, **indexers_kwargs) 1238 tolerance=tolerance, 1239 copy=copy, -> 1240 fill_value=fill_value, 1241 ) 1242 return self._from_temp_dataset(ds) ~/dev/xarray/xarray/core/dataset.py in reindex(self, indexers, method, tolerance, copy, fill_value, **indexers_kwargs) 2360 tolerance, 2361 copy=copy, -> 2362 fill_value=fill_value, 2363 ) 2364 coord_names = set(self._coord_names) ~/dev/xarray/xarray/core/alignment.py in reindex_variables(variables, sizes, indexes, indexers, method, tolerance, copy, fill_value) 398 ) 399 --> 400 target = new_indexes[dim] = utils.safe_cast_to_index(indexers[dim]) 401 402 if dim in indexes: ~/dev/xarray/xarray/core/utils.py in safe_cast_to_index(array) 104 index = array 105 elif hasattr(array, "to_index"): --> 106 index = array.to_index() 107 else: 108 kwargs = {} ~/dev/xarray/xarray/core/dataarray.py in to_index(self) 545 arrays. 546 """ --> 547 return self.variable.to_index() 548 549 @property ~/dev/xarray/xarray/core/variable.py in to_index(self) 445 def to_index(self): 446 """Convert this variable to a pandas.Index""" --> 447 return self.to_index_variable().to_index() 448 449 def to_dict(self, data=True): ~/dev/xarray/xarray/core/variable.py in to_index_variable(self) 438 """Return this variable as an xarray.IndexVariable""" 439 return IndexVariable( --> 440 self.dims, self._data, self._attrs, encoding=self._encoding, fastpath=True 441 ) 442 ~/dev/xarray/xarray/core/variable.py in init(self, dims, data, attrs, encoding, fastpath) 1941 super().init(dims, data, attrs, encoding, fastpath) 1942 if self.ndim != 1: -> 1943 raise ValueError("%s objects must be 1-dimensional" % type(self).name) 1944 1945 # Unlike in Variable, always eagerly load values into memory ValueError: IndexVariable objects must be 1-dimensional ``` |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/3252/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 213426608 | MDU6SXNzdWUyMTM0MjY2MDg= | 1306 | xarray vs Xarray vs XArray | shoyer 1217238 | closed | 0 | 12 | 2017-03-10T19:12:48Z | 2019-01-27T01:37:53Z | 2019-01-27T01:36:35Z | MEMBER | Yes, this is a little silly, but do we have a preferred capitalization for the proper name? We mostly stick to "xarray" in the docs but "Xarray" or "XArray" is arguably a little more readable and grammatically correct. |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/1306/reactions",
"total_count": 2,
"+1": 0,
"-1": 0,
"laugh": 2,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 276241193 | MDU6SXNzdWUyNzYyNDExOTM= | 1738 | Windows/Python 2.7 tests of dask-distributed failing on master/v0.10.0 | shoyer 1217238 | closed | 0 | 12 | 2017-11-23T00:42:29Z | 2018-10-09T04:13:41Z | 2018-10-09T04:13:41Z | MEMBER | Python 2.7 builds on Windows are failing: https://ci.appveyor.com/project/shoyer/xray/build/1.0.3018 The tests that are failing are all variations of
C:\Python27-conda64\envs\test_env\lib\contextlib.py:24: in exit self.gen.next() C:\Python27-conda64\envs\test_env\lib\site-packages\distributed\utils_test.py:139: in pristine_loop loop.close(all_fds=True) C:\Python27-conda64\envs\test_env\lib\site-packages\tornado\ioloop.py:716: in close self.remove_handler(self._waker.fileno()) C:\Python27-conda64\envs\test_env\lib\site-packages\tornado\platform\common.py:91: in fileno return self.reader.fileno() C:\Python27-conda64\envs\test_env\lib\socket.py:228: in meth return getattr(self._sock,name)(*args) args = (<socket._closedsocket object at 0x00000000131F27F0>, 'fileno') def _dummy(*args):
@mrocklin any guesses about what this could be? |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/1738/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 143877458 | MDExOlB1bGxSZXF1ZXN0NjQyODM5OTc= | 806 | Decorators for registering custom accessors in xarray | shoyer 1217238 | closed | 0 | 12 | 2016-03-28T02:43:05Z | 2016-05-13T16:48:37Z | 2016-05-13T16:48:37Z | MEMBER | 0 | pydata/xarray/pulls/806 | Fixes #706 New (experimental) decorators CC @rafa-guedes @rabernat @fmaussion @khaeru @ajdawson -- as people who might use such an interface, it would be great to get some feedback about how well this would work for you. |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/806/reactions",
"total_count": 2,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 1,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull | |||||
| 115805419 | MDExOlB1bGxSZXF1ZXN0NTAwODgwMTY= | 648 | Rework DataArray internals | shoyer 1217238 | closed | 0 | 12 | 2015-11-09T06:09:19Z | 2015-12-04T20:50:46Z | 2015-12-04T20:40:31Z | MEMBER | 0 | pydata/xarray/pulls/648 | Fixes #367 Fixes #634 Fixes #649 The internal data model used by This means that creating a DataArray with the same
and the new behavior (compare the values of the
It's also no longer possible to convert a DataArray to a Dataset with |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/648/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull | |||||
| 98274024 | MDExOlB1bGxSZXF1ZXN0NDEyODY3ODI= | 504 | ENH: where method for masking xray objects according to some criteria | shoyer 1217238 | closed | 0 | 12 | 2015-07-30T21:56:00Z | 2015-08-01T20:56:33Z | 2015-08-01T20:56:31Z | MEMBER | 0 | pydata/xarray/pulls/504 | Fixes #503 Example usage: ``` In [13]: x = xray.DataArray(np.arange(9).reshape(3, 3), dims=['x', 'y']) In [14]: x.where(x > 4) Out[14]: <xray.DataArray (x: 3, y: 3)> array([[ nan, nan, nan], [ nan, nan, 5.], [ 6., 7., 8.]]) Coordinates: * y (y) int64 0 1 2 * x (x) int64 0 1 2 ``` Example from "What's new": ``` In [4]: ds = xray.Dataset(coords={'x': range(100), 'y': range(100)}) In [5]: ds['distance'] = np.sqrt(ds.x ** 2 + ds.y ** 2) In [6]: ds.distance.where(ds.distance < 100).plot() Out[6]: <matplotlib.image.AxesImage at 0x11a819690> ```
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/504/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);
