home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

5 rows where comments = 11 and user = 2448579 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

type 2

  • issue 3
  • pull 2

state 2

  • closed 4
  • open 1

repo 1

  • xarray 5
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
1471685307 I_kwDOAMm_X85XuCK7 7344 Disable bottleneck by default? dcherian 2448579 open 0     11 2022-12-01T17:26:11Z 2024-03-27T00:22:41Z   MEMBER      

What is your issue?

Our choice to enable bottleneck by default results in quite a few issues about numerical stability and funny dtype behaviour: #7336, #7128, #2370, #1346 (and probably more)

Shall we disable it by default?

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7344/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
484270833 MDU6SXNzdWU0ODQyNzA4MzM= 3248 combine_by_coords fails with DataArrays dcherian 2448579 closed 0     11 2019-08-23T00:11:38Z 2021-07-02T21:34:36Z 2021-07-02T21:34:36Z MEMBER      

MCVE Code Sample

python da1 = xr.DataArray([1, 2, 3], dims='x', coords={'x': [0, 1, 2]}) da2 = xr.DataArray([3, 4, 5], dims='x', coords={'x': [2, 3, 4]}) xr.combine_by_coords([da1, da2])

```

ValueError Traceback (most recent call last) <ipython-input-133-d27216ba5688> in <module> 1 da1 = xr.DataArray([1, 2, 3], dims='x', coords={'x': [0, 1, 2]}) 2 da2 = xr.DataArray([3, 4, 5], dims='x', coords={'x': [2, 3, 4]}) ----> 3 xr.combine_by_coords([da1, da2])

~/work/python/xarray/xarray/core/combine.py in combine_by_coords(datasets, compat, data_vars, coords, fill_value, join) 619 compat=compat, 620 fill_value=fill_value, --> 621 join=join, 622 ) 623

~/work/python/xarray/xarray/core/merge.py in merge(objects, compat, join, fill_value) 588 ) 589 --> 590 obj = obj.to_dataset() if isinstance(obj, DataArray) else obj 591 dict_like_objects.append(obj) 592

~/work/python/xarray/xarray/core/dataarray.py in to_dataset(self, dim, name) 478 return self._to_dataset_split(dim) 479 else: --> 480 return self._to_dataset_whole(name) 481 482 @property

~/work/python/xarray/xarray/core/dataarray.py in _to_dataset_whole(self, name, shallow_copy) 426 if name is None: 427 raise ValueError( --> 428 "unable to convert unnamed DataArray to a " 429 "Dataset without providing an explicit name" 430 )

ValueError: unable to convert unnamed DataArray to a Dataset without providing an explicit name ```

To get what I want, I need xr.combine_by_coords([da1.to_dataset(name='a'), da2.to_dataset(name='a')]).a

I think the issue is that the code uses to_dataset instead of _to_temp_dataset

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3248/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
547012915 MDU6SXNzdWU1NDcwMTI5MTU= 3673 Test failures with pandas master dcherian 2448579 closed 0     11 2020-01-08T17:48:06Z 2020-01-29T17:21:14Z 2020-01-29T17:21:14Z MEMBER      

https://dev.azure.com/xarray/xarray/_build/results?buildId=1859&view=logs&jobId=41d90575-019f-5cfd-d78e-c2adebf9a30b&j=41d90575-019f-5cfd-d78e-c2adebf9a30b

2020-01-07T19:19:39.0297443Z =================================== FAILURES =================================== 2020-01-07T19:19:39.0495451Z _________________ test_timedeltaindex_add_cftimeindex[365_day] _________________ 2020-01-07T19:19:39.0496702Z 2020-01-07T19:19:39.0498391Z calendar = '365_day' 2020-01-07T19:19:39.0499052Z 2020-01-07T19:19:39.0500036Z @requires_cftime 2020-01-07T19:19:39.0500669Z @pytest.mark.parametrize("calendar", _CFTIME_CALENDARS) 2020-01-07T19:19:39.0501986Z def test_timedeltaindex_add_cftimeindex(calendar): 2020-01-07T19:19:39.0502556Z a = xr.cftime_range("2000", periods=5, calendar=calendar) 2020-01-07T19:19:39.0503384Z deltas = pd.TimedeltaIndex([timedelta(days=2) for _ in range(5)]) 2020-01-07T19:19:39.0503635Z result = deltas + a 2020-01-07T19:19:39.0504330Z expected = a.shift(2, "D") 2020-01-07T19:19:39.0505283Z assert result.equals(expected) 2020-01-07T19:19:39.0506265Z > assert isinstance(result, CFTimeIndex) 2020-01-07T19:19:39.0507151Z E AssertionError: assert False 2020-01-07T19:19:39.0508329Z E + where False = isinstance(Index([2000-01-03 00:00:00, 2000-01-04 00:00:00, 2000-01-05 00:00:00,\n 2000-01-06 00:00:00, 2000-01-07 00:00:00],\n dtype='object'), CFTimeIndex) 2020-01-07T19:19:39.0509344Z 2020-01-07T19:19:39.0510351Z xarray/tests/test_cftimeindex.py:724: AssertionError 2020-01-07T19:19:39.0510935Z _________________ test_timedeltaindex_add_cftimeindex[360_day] _________________ 2020-01-07T19:19:39.0511748Z 2020-01-07T19:19:39.0513201Z calendar = '360_day' 2020-01-07T19:19:39.0513958Z 2020-01-07T19:19:39.0514197Z @requires_cftime 2020-01-07T19:19:39.0515571Z @pytest.mark.parametrize("calendar", _CFTIME_CALENDARS) 2020-01-07T19:19:39.0517319Z def test_timedeltaindex_add_cftimeindex(calendar): 2020-01-07T19:19:39.0517575Z a = xr.cftime_range("2000", periods=5, calendar=calendar) 2020-01-07T19:19:39.0517798Z deltas = pd.TimedeltaIndex([timedelta(days=2) for _ in range(5)]) 2020-01-07T19:19:39.0519155Z result = deltas + a 2020-01-07T19:19:39.0519385Z expected = a.shift(2, "D") 2020-01-07T19:19:39.0519619Z assert result.equals(expected) 2020-01-07T19:19:39.0520075Z > assert isinstance(result, CFTimeIndex) 2020-01-07T19:19:39.0520252Z E AssertionError: assert False 2020-01-07T19:19:39.0520850Z E + where False = isinstance(Index([2000-01-03 00:00:00, 2000-01-04 00:00:00, 2000-01-05 00:00:00,\n 2000-01-06 00:00:00, 2000-01-07 00:00:00],\n dtype='object'), CFTimeIndex) 2020-01-07T19:19:39.0521907Z 2020-01-07T19:19:39.0522818Z xarray/tests/test_cftimeindex.py:724: AssertionError 2020-01-07T19:19:39.0523212Z _________________ test_timedeltaindex_add_cftimeindex[julian] __________________ 2020-01-07T19:19:39.0524673Z 2020-01-07T19:19:39.0525157Z calendar = 'julian' 2020-01-07T19:19:39.0525992Z 2020-01-07T19:19:39.0526232Z @requires_cftime 2020-01-07T19:19:39.0526834Z @pytest.mark.parametrize("calendar", _CFTIME_CALENDARS) 2020-01-07T19:19:39.0531142Z def test_timedeltaindex_add_cftimeindex(calendar): 2020-01-07T19:19:39.0531602Z a = xr.cftime_range("2000", periods=5, calendar=calendar) 2020-01-07T19:19:39.0531897Z deltas = pd.TimedeltaIndex([timedelta(days=2) for _ in range(5)]) 2020-01-07T19:19:39.0532131Z result = deltas + a 2020-01-07T19:19:39.0532351Z expected = a.shift(2, "D") 2020-01-07T19:19:39.0532597Z assert result.equals(expected) 2020-01-07T19:19:39.0532824Z > assert isinstance(result, CFTimeIndex) 2020-01-07T19:19:39.0533279Z E AssertionError: assert False 2020-01-07T19:19:39.0534006Z E + where False = isinstance(Index([2000-01-03 00:00:00, 2000-01-04 00:00:00, 2000-01-05 00:00:00,\n 2000-01-06 00:00:00, 2000-01-07 00:00:00],\n dtype='object'), CFTimeIndex) 2020-01-07T19:19:39.0534981Z 2020-01-07T19:19:39.0535242Z xarray/tests/test_cftimeindex.py:724: AssertionError 2020-01-07T19:19:39.0536707Z ________________ test_timedeltaindex_add_cftimeindex[all_leap] _________________ 2020-01-07T19:19:39.0537052Z 2020-01-07T19:19:39.0538274Z calendar = 'all_leap' 2020-01-07T19:19:39.0538679Z 2020-01-07T19:19:39.0538864Z @requires_cftime 2020-01-07T19:19:39.0539011Z @pytest.mark.parametrize("calendar", _CFTIME_CALENDARS) 2020-01-07T19:19:39.0539145Z def test_timedeltaindex_add_cftimeindex(calendar): 2020-01-07T19:19:39.0539272Z a = xr.cftime_range("2000", periods=5, calendar=calendar) 2020-01-07T19:19:39.0539413Z deltas = pd.TimedeltaIndex([timedelta(days=2) for _ in range(5)]) 2020-01-07T19:19:39.0539531Z result = deltas + a 2020-01-07T19:19:39.0539644Z expected = a.shift(2, "D") 2020-01-07T19:19:39.0539783Z assert result.equals(expected) 2020-01-07T19:19:39.0539916Z > assert isinstance(result, CFTimeIndex) 2020-01-07T19:19:39.0540048Z E AssertionError: assert False 2020-01-07T19:19:39.0540781Z E + where False = isinstance(Index([2000-01-03 00:00:00, 2000-01-04 00:00:00, 2000-01-05 00:00:00,\n 2000-01-06 00:00:00, 2000-01-07 00:00:00],\n dtype='object'), CFTimeIndex) 2020-01-07T19:19:39.0540948Z 2020-01-07T19:19:39.0541089Z xarray/tests/test_cftimeindex.py:724: AssertionError 2020-01-07T19:19:39.0541346Z _________________ test_timedeltaindex_add_cftimeindex[366_day] _________________ 2020-01-07T19:19:39.0541454Z 2020-01-07T19:19:39.0542123Z calendar = '366_day' 2020-01-07T19:19:39.0542355Z 2020-01-07T19:19:39.0542476Z @requires_cftime 2020-01-07T19:19:39.0542613Z @pytest.mark.parametrize("calendar", _CFTIME_CALENDARS) 2020-01-07T19:19:39.0542733Z def test_timedeltaindex_add_cftimeindex(calendar): 2020-01-07T19:19:39.0542852Z a = xr.cftime_range("2000", periods=5, calendar=calendar) 2020-01-07T19:19:39.0543006Z deltas = pd.TimedeltaIndex([timedelta(days=2) for _ in range(5)]) 2020-01-07T19:19:39.0543123Z result = deltas + a 2020-01-07T19:19:39.0543239Z expected = a.shift(2, "D") 2020-01-07T19:19:39.0543372Z assert result.equals(expected) 2020-01-07T19:19:39.0543499Z > assert isinstance(result, CFTimeIndex) 2020-01-07T19:19:39.0543616Z E AssertionError: assert False 2020-01-07T19:19:39.0544641Z E + where False = isinstance(Index([2000-01-03 00:00:00, 2000-01-04 00:00:00, 2000-01-05 00:00:00,\n 2000-01-06 00:00:00, 2000-01-07 00:00:00],\n dtype='object'), CFTimeIndex) 2020-01-07T19:19:39.0545191Z 2020-01-07T19:19:39.0545399Z xarray/tests/test_cftimeindex.py:724: AssertionError 2020-01-07T19:19:39.0545554Z ________________ test_timedeltaindex_add_cftimeindex[gregorian] ________________ 2020-01-07T19:19:39.0545679Z 2020-01-07T19:19:39.0546078Z calendar = 'gregorian' 2020-01-07T19:19:39.0546251Z 2020-01-07T19:19:39.0546622Z @requires_cftime 2020-01-07T19:19:39.0546774Z @pytest.mark.parametrize("calendar", _CFTIME_CALENDARS) 2020-01-07T19:19:39.0546940Z def test_timedeltaindex_add_cftimeindex(calendar): 2020-01-07T19:19:39.0547086Z a = xr.cftime_range("2000", periods=5, calendar=calendar) 2020-01-07T19:19:39.0547379Z deltas = pd.TimedeltaIndex([timedelta(days=2) for _ in range(5)]) 2020-01-07T19:19:39.0547529Z result = deltas + a 2020-01-07T19:19:39.0547669Z expected = a.shift(2, "D") 2020-01-07T19:19:39.0547989Z assert result.equals(expected) 2020-01-07T19:19:39.0548101Z > assert isinstance(result, CFTimeIndex) 2020-01-07T19:19:39.0548210Z E AssertionError: assert False 2020-01-07T19:19:39.0548869Z E + where False = isinstance(Index([2000-01-03 00:00:00, 2000-01-04 00:00:00, 2000-01-05 00:00:00,\n 2000-01-06 00:00:00, 2000-01-07 00:00:00],\n dtype='object'), CFTimeIndex) 2020-01-07T19:19:39.0549023Z 2020-01-07T19:19:39.0549154Z xarray/tests/test_cftimeindex.py:724: AssertionError 2020-01-07T19:19:39.0549296Z ___________ test_timedeltaindex_add_cftimeindex[proleptic_gregorian] ___________ 2020-01-07T19:19:39.0549400Z 2020-01-07T19:19:39.0549680Z calendar = 'proleptic_gregorian' 2020-01-07T19:19:39.0550189Z 2020-01-07T19:19:39.0550314Z @requires_cftime 2020-01-07T19:19:39.0550430Z @pytest.mark.parametrize("calendar", _CFTIME_CALENDARS) 2020-01-07T19:19:39.0550568Z def test_timedeltaindex_add_cftimeindex(calendar): 2020-01-07T19:19:39.0550686Z a = xr.cftime_range("2000", periods=5, calendar=calendar) 2020-01-07T19:19:39.0550806Z deltas = pd.TimedeltaIndex([timedelta(days=2) for _ in range(5)]) 2020-01-07T19:19:39.0550946Z result = deltas + a 2020-01-07T19:19:39.0551062Z expected = a.shift(2, "D") 2020-01-07T19:19:39.0551198Z assert result.equals(expected) 2020-01-07T19:19:39.0551337Z > assert isinstance(result, CFTimeIndex) 2020-01-07T19:19:39.0551452Z E AssertionError: assert False 2020-01-07T19:19:39.0552276Z E + where False = isinstance(Index([2000-01-03 00:00:00, 2000-01-04 00:00:00, 2000-01-05 00:00:00,\n 2000-01-06 00:00:00, 2000-01-07 00:00:00],\n dtype='object'), CFTimeIndex) 2020-01-07T19:19:39.0552425Z 2020-01-07T19:19:39.0552548Z xarray/tests/test_cftimeindex.py:724: AssertionError 2020-01-07T19:19:39.0552973Z ____ test_cf_datetime_nan[num_dates1-days since 2000-01-01-expected_list1] _____ 2020-01-07T19:19:39.0553281Z 2020-01-07T19:19:39.0553765Z num_dates = [nan, 0], units = 'days since 2000-01-01' 2020-01-07T19:19:39.0554887Z expected_list = ['NaT', '2000-01-01T00:00:00Z'] 2020-01-07T19:19:39.0555104Z 2020-01-07T19:19:39.0555251Z @arm_xfail 2020-01-07T19:19:39.0555406Z @requires_cftime 2020-01-07T19:19:39.0555551Z @pytest.mark.parametrize( 2020-01-07T19:19:39.0555693Z ["num_dates", "units", "expected_list"], 2020-01-07T19:19:39.0555849Z [ 2020-01-07T19:19:39.0556225Z ([np.nan], "days since 2000-01-01", ["NaT"]), 2020-01-07T19:19:39.0556674Z ([np.nan, 0], "days since 2000-01-01", ["NaT", "2000-01-01T00:00:00Z"]), 2020-01-07T19:19:39.0556881Z ( 2020-01-07T19:19:39.0557026Z [np.nan, 0, 1], 2020-01-07T19:19:39.0557374Z "days since 2000-01-01", 2020-01-07T19:19:39.0558208Z ["NaT", "2000-01-01T00:00:00Z", "2000-01-02T00:00:00Z"], 2020-01-07T19:19:39.0558355Z ), 2020-01-07T19:19:39.0558466Z ], 2020-01-07T19:19:39.0558591Z ) 2020-01-07T19:19:39.0559984Z def test_cf_datetime_nan(num_dates, units, expected_list): 2020-01-07T19:19:39.0560153Z with warnings.catch_warnings(): 2020-01-07T19:19:39.0560559Z warnings.filterwarnings("ignore", "All-NaN") 2020-01-07T19:19:39.0560733Z actual = coding.times.decode_cf_datetime(num_dates, units) 2020-01-07T19:19:39.0561076Z # use pandas because numpy will deprecate timezone-aware conversions 2020-01-07T19:19:39.0561235Z expected = pd.to_datetime(expected_list) 2020-01-07T19:19:39.0561532Z > assert_array_equal(expected, actual) 2020-01-07T19:19:39.0561669Z E AssertionError: 2020-01-07T19:19:39.0561785Z E Arrays are not equal 2020-01-07T19:19:39.0561899Z E 2020-01-07T19:19:39.0562138Z E Mismatched elements: 2 / 2 (100%) 2020-01-07T19:19:39.0562505Z E x: array([NaT, Timestamp('2000-01-01 00:00:00+0000', tz='UTC')], dtype=object) 2020-01-07T19:19:39.0563375Z E y: array([ 'NaT', '2000-01-01T00:00:00.000000000'], 2020-01-07T19:19:39.0563710Z E dtype='datetime64[ns]') 2020-01-07T19:19:39.0564285Z 2020-01-07T19:19:39.0564914Z xarray/tests/test_coding_times.py:455: AssertionError 2020-01-07T19:19:39.0565686Z ____ test_cf_datetime_nan[num_dates2-days since 2000-01-01-expected_list2] _____ 2020-01-07T19:19:39.0565858Z 2020-01-07T19:19:39.0566229Z num_dates = [nan, 0, 1], units = 'days since 2000-01-01' 2020-01-07T19:19:39.0566709Z expected_list = ['NaT', '2000-01-01T00:00:00Z', '2000-01-02T00:00:00Z'] 2020-01-07T19:19:39.0566894Z 2020-01-07T19:19:39.0567039Z @arm_xfail 2020-01-07T19:19:39.0567178Z @requires_cftime 2020-01-07T19:19:39.0567320Z @pytest.mark.parametrize( 2020-01-07T19:19:39.0567486Z ["num_dates", "units", "expected_list"], 2020-01-07T19:19:39.0567660Z [ 2020-01-07T19:19:39.0568035Z ([np.nan], "days since 2000-01-01", ["NaT"]), 2020-01-07T19:19:39.0568760Z ([np.nan, 0], "days since 2000-01-01", ["NaT", "2000-01-01T00:00:00Z"]), 2020-01-07T19:19:39.0569295Z ( 2020-01-07T19:19:39.0569436Z [np.nan, 0, 1], 2020-01-07T19:19:39.0569737Z "days since 2000-01-01", 2020-01-07T19:19:39.0570253Z ["NaT", "2000-01-01T00:00:00Z", "2000-01-02T00:00:00Z"], 2020-01-07T19:19:39.0570426Z ), 2020-01-07T19:19:39.0570560Z ], 2020-01-07T19:19:39.0570962Z ) 2020-01-07T19:19:39.0571083Z def test_cf_datetime_nan(num_dates, units, expected_list): 2020-01-07T19:19:39.0571247Z with warnings.catch_warnings(): 2020-01-07T19:19:39.0571569Z warnings.filterwarnings("ignore", "All-NaN") 2020-01-07T19:19:39.0571732Z actual = coding.times.decode_cf_datetime(num_dates, units) 2020-01-07T19:19:39.0572075Z # use pandas because numpy will deprecate timezone-aware conversions 2020-01-07T19:19:39.0572306Z expected = pd.to_datetime(expected_list) 2020-01-07T19:19:39.0572449Z > assert_array_equal(expected, actual) 2020-01-07T19:19:39.0572573Z E AssertionError: 2020-01-07T19:19:39.0572694Z E Arrays are not equal 2020-01-07T19:19:39.0572812Z E 2020-01-07T19:19:39.0572933Z E Mismatched elements: 3 / 3 (100%) 2020-01-07T19:19:39.0573443Z E x: array([NaT, Timestamp('2000-01-01 00:00:00+0000', tz='UTC'), 2020-01-07T19:19:39.0573826Z E Timestamp('2000-01-02 00:00:00+0000', tz='UTC')], dtype=object) 2020-01-07T19:19:39.0575539Z E y: array([ 'NaT', '2000-01-01T00:00:00.000000000', 2020-01-07T19:19:39.0576050Z E '2000-01-02T00:00:00.000000000'], dtype='datetime64[ns]') 2020-01-07T19:19:39.0576213Z 2020-01-07T19:19:39.0576721Z xarray/tests/test_coding_times.py:455: AssertionError

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3673/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
555258488 MDExOlB1bGxSZXF1ZXN0MzY3MjQwMDE3 3723 Fix whats-new for 0.15 dcherian 2448579 closed 0     11 2020-01-26T17:11:56Z 2020-01-28T23:08:19Z 2020-01-28T23:08:13Z MEMBER   0 pydata/xarray/pulls/3723

whats-new fixes.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3723/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
484752930 MDExOlB1bGxSZXF1ZXN0MzEwNTY1NzQ1 3258 [WIP] Add map_blocks. dcherian 2448579 closed 0     11 2019-08-24T00:00:56Z 2019-09-08T04:20:26Z 2019-09-08T04:20:20Z MEMBER   0 pydata/xarray/pulls/3258
  • Related #3147
  • [ ] Tests added
  • [x] Passes black . && mypy . && flake8
  • [ ] Fully documented, including whats-new.rst for all changes and api.rst for new API

ping @mrocklin @sofroniewn @shanaxel42

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3258/reactions",
    "total_count": 3,
    "+1": 3,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 33.193ms · About: xarray-datasette