issues
4 rows where comments = 1, type = "issue" and user = 500246 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1608352581 | I_kwDOAMm_X85f3YNF | 7581 | xr.where loses attributes despite keep_attrs=True | gerritholl 500246 | closed | 0 | 1 | 2023-03-03T10:14:34Z | 2023-04-06T01:58:45Z | 2023-04-06T01:58:45Z | CONTRIBUTOR | What happened?I'm using What did you expect to happen?I expect that if I use Minimal Complete Verifiable Example
MVCE confirmation
Relevant log output
Anything else we need to know?I can make a workaround by turning the logic around, such as The workaround works in this case, but Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.11.0 | packaged by conda-forge | (main, Jan 14 2023, 12:27:40) [GCC 11.3.0]
python-bits: 64
OS: Linux
OS-release: 5.3.18-150300.59.76-default
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: ('en_GB', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.9.1
xarray: 2023.2.0
pandas: 1.5.3
numpy: 1.24.2
scipy: 1.10.1
netCDF4: 1.6.2
pydap: None
h5netcdf: 1.1.0
h5py: 3.8.0
Nio: None
zarr: 2.13.6
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.3.6
cfgrib: None
iris: None
bottleneck: 1.3.6
dask: 2023.2.1
distributed: 2023.2.1
matplotlib: 3.7.0
cartopy: 0.21.1
seaborn: None
numbagg: None
fsspec: 2023.1.0
cupy: None
pint: 0.20.1
sparse: None
flox: None
numpy_groupies: None
setuptools: 67.4.0
pip: 23.0.1
conda: None
pytest: 7.2.1
mypy: None
IPython: 8.7.0
sphinx: 5.3.0
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7581/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
751732952 | MDU6SXNzdWU3NTE3MzI5NTI= | 4612 | Assigning nan to int-dtype array converts nan to int | gerritholl 500246 | open | 0 | 1 | 2020-11-26T17:00:45Z | 2021-01-02T03:55:30Z | CONTRIBUTOR | (I am almost sure this already exists as an issue, but I can't find the original) What happened: When assigning nan to a integer-dtype array, the nan gets incorrectly inverted to int. What you expected to happen: I expect to get a Minimal Complete Verifiable Example:
Gives:
Anything else we need to know?: In numpy the equivalent code raises This is related but different from #2945. In #2945, xarray behaves the same as numpy. In #4612, xarray behaves differently from numpy. Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.6 | packaged by conda-forge | (default, Oct 7 2020, 19:08:05) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 4.12.14-lp150.12.82-default machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.16.1 pandas: 1.1.4 numpy: 1.19.4 scipy: 1.5.3 netCDF4: 1.5.4 pydap: None h5netcdf: 0.8.1 h5py: 3.1.0 Nio: None zarr: 2.5.0 cftime: 1.2.1 nc_time_axis: None PseudoNetCDF: None rasterio: 1.1.7 cfgrib: None iris: None bottleneck: None dask: 2.30.0 distributed: 2.30.1 matplotlib: 3.3.2 cartopy: 0.18.0 seaborn: None numbagg: None pint: None setuptools: 49.6.0.post20201009 pip: 20.2.4 conda: installed pytest: 6.1.2 IPython: 7.19.0 sphinx: 3.3.0 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4612/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
376104925 | MDU6SXNzdWUzNzYxMDQ5MjU= | 2529 | numpy.insert on DataArray may silently result in array inconsistent with its coordinates | gerritholl 500246 | closed | 0 | 1 | 2018-10-31T18:33:23Z | 2020-11-07T21:55:42Z | 2020-11-07T21:55:42Z | CONTRIBUTOR | ```python import numpy import xarray da = xarray.DataArray(numpy.arange(103).reshape(10, 3), dims=("x", "y"), coords={"foo": (("x", "y"), numpy.arange(310).reshape(10,3))}) print(da.shape == da["foo"].shape) da2 = numpy.insert(da, 3, 0, axis=0) print(da2.shape == da2["foo"].shape) ``` Problem descriptionRunning the code snippet gives
and does not raise any exception. In the resulting Expected OutputI would expect to get an exception, telling me that the insertion has failed because there are coordinates associated with the axis along which we are inserting values. It would be nice to have an Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2529/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
410317757 | MDU6SXNzdWU0MTAzMTc3NTc= | 2772 | Should xarray allow assigning a masked constant? | gerritholl 500246 | open | 0 | 1 | 2019-02-14T14:10:20Z | 2019-02-15T20:24:44Z | CONTRIBUTOR | Currently, |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2772/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);