home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

5 rows where comments = 0, type = "issue" and user = 14371165 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date), closed_at (date)

state 2

  • closed 3
  • open 2

type 1

  • issue · 5 ✖

repo 1

  • xarray 5
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
1537068105 I_kwDOAMm_X85bncxJ 7450 Backend array documentation typo Illviljan 14371165 open 0     0 2023-01-17T21:37:26Z 2023-01-17T21:56:12Z   MEMBER      

What happened?

https://docs.xarray.dev/en/stable/internals/how-to-add-new-backend.html#indexing-examples

I believe there's a typo in the BASIC indexing support example: ```python

shall support integers

backend_array._raw_indexing_method(1, 1) ```

Should be: ```python

shall support integers

backend_array._raw_indexing_method((1, 1)) ```

Suggestion of possible fixes: * Make sure it is a typo. * Create a valid custom MyBackendArray and initialize it. So it is easier to tell if it's a typo. * Add type hinting so mypy can easier catch these errors.

What did you expect to happen?

No response

Minimal Complete Verifiable Example

No response

MVCE confirmation

  • [ ] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • [ ] Complete example — the example is self-contained, including all data and the text of any traceback.
  • [ ] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • [ ] New issue — a search of GitHub Issues suggests this is not a duplicate.

Relevant log output

No response

Anything else we need to know?

No response

Environment

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7450/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
1376776178 I_kwDOAMm_X85SD-_y 7049 Backend entrypoints not public? Illviljan 14371165 closed 0     0 2022-09-17T13:41:13Z 2022-10-26T16:01:06Z 2022-10-26T16:01:06Z MEMBER      

What is your issue?

As I've understood it ZarrBackendEntrypoint is the engine used when loading zarr-files. But for some reason we show ZarrStore in xr.backends. I believe the ZarrStore class is supposed to be just a implementation detail, right?

```python

The available engines:

xr.backends.list_engines() Out[23]: {'netcdf4': <xarray.backends.netCDF4_.NetCDF4BackendEntrypoint object at 0x00000296D05D11F0>, 'h5netcdf': <xarray.backends.h5netcdf_.H5netcdfBackendEntrypoint object at 0x00000296D05D14C0>, 'scipy': <xarray.backends.scipy_.ScipyBackendEntrypoint object at 0x00000296D05D11C0>, 'pseudonetcdf': <xarray.backends.pseudonetcdf_.PseudoNetCDFBackendEntrypoint object at 0x00000296D05D1430>, 'pydap': <xarray.backends.pydap_.PydapBackendEntrypoint object at 0x00000296D05D1310>, 'store': <xarray.backends.store.StoreBackendEntrypoint object at 0x00000296D05D1340>, 'zarr': <xarray.backends.zarr.ZarrBackendEntrypoint object at 0x00000296D05D12E0>}

The public class is ZarrStore instead of ZarrBackendEntrypoint, how come?

dir(xr.backends) Out[22]: ['AbstractDataStore', 'BackendArray', 'BackendEntrypoint', 'CachingFileManager', 'CfGribDataStore', 'DummyFileManager', 'FileManager', 'H5NetCDFStore', 'InMemoryDataStore', 'NetCDF4DataStore', 'NioDataStore', 'PseudoNetCDFDataStore', 'PydapDataStore', 'ScipyDataStore', 'ZarrStore', 'all', 'builtins', 'cached', 'doc', 'file', 'loader', 'name', 'package', 'path', 'spec', 'api', 'cfgrib_', 'common', 'file_manager', 'h5netcdf_', 'list_engines', 'locks', 'lru_cache', 'memory', 'netCDF4_', 'netcdf3', 'plugins', 'pseudonetcdf_', 'pydap_', 'pynio_', 'rasterio_', 'scipy_', 'store', 'zarr'] ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7049/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
1410534774 I_kwDOAMm_X85UEw12 7170 Scatter plots overlap in facetgrid in 3d Illviljan 14371165 open 0     0 2022-10-16T16:06:56Z 2022-10-16T16:08:55Z   MEMBER      

What happened?

Any matplotlib gurus have any ideas how to nicely fit 3d plots in facetgrid? python ds = xr.tutorial.scatter_example_dataset(seed=42) fg = ds.plot.scatter(x="A", y="B", z="z", hue="y", markersize="x", row="x", col="w")

2d looks fine: python fg = ds.plot.scatter(x="A", y="B", hue="y", markersize="x", row="x", col="w")

What did you expect to happen?

No plots overlapping each other, even if rotating the plots.

Minimal Complete Verifiable Example

No response

MVCE confirmation

  • [x] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • [x] Complete example — the example is self-contained, including all data and the text of any traceback.
  • [x] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • [x] New issue — a search of GitHub Issues suggests this is not a duplicate.

Relevant log output

No response

Anything else we need to know?

No response

Environment

xr.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.10.6 | packaged by conda-forge | (main, Aug 22 2022, 20:30:19) [MSC v.1929 64 bit (AMD64)] python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 58 Stepping 9, GenuineIntel byteorder: little LC_ALL: None LANG: en LOCALE: ('Swedish_Sweden', '1252') libhdf5: 1.12.2 libnetcdf: 4.8.1 xarray: 2022.9.1.dev266+gbd01f9cc.d20221006 pandas: 1.5.0 numpy: 1.23.3 scipy: 1.9.1 netCDF4: 1.6.1 pydap: installed h5netcdf: 1.0.2 h5py: 3.7.0 Nio: None zarr: 2.13.2 cftime: 1.6.2 nc_time_axis: 1.4.1 PseudoNetCDF: 3.2.2 rasterio: 1.3.2 cfgrib: None iris: 3.3.0 bottleneck: 1.3.5 dask: 2022.9.2 distributed: 2022.9.2 matplotlib: 3.6.0 cartopy: 0.21.0 seaborn: 0.12.0 numbagg: 0.2.1 fsspec: 2022.8.2 cupy: None pint: 0.19.2 sparse: 0.13.0 flox: 0.5.10.dev21+g91b6e19 numpy_groupies: 0.9.19 setuptools: 65.4.1 pip: 22.2.2 conda: None pytest: 7.1.3 IPython: 7.33.0 sphinx: 5.2.3 C:\Users\J.W\anaconda3\envs\xarray-tests\lib\site-packages\_distutils_hack\__init__.py:33: UserWarning: Setuptools is replacing distutils. warnings.warn("Setuptools is replacing distutils.")
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/7170/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 issue
778083748 MDU6SXNzdWU3NzgwODM3NDg= 4761 Dataset.interp drops boolean variables Illviljan 14371165 closed 0     0 2021-01-04T13:09:56Z 2021-05-13T15:28:15Z 2021-05-13T15:28:15Z MEMBER      

What happened: Dataset.interp silently drops boolean variables.

What you expected to happen: If I'm interpolating a group of variables I expect to get all of them back in the correct shape with relevant values in them.

If the variables are boolean or object arrays I don't expect it to do linear interpolation because it doesn't make sense but stepwise interpolation like nearest or zero order interpolation should be fine to expect.

Minimal Complete Verifiable Example:

```python import numpy as np a = np.arange(0, 5) b = np.core.defchararray.add("long_variable_name", a.astype(str)) coords = dict(time=da.array([0, 1])) data_vars = dict() for v in b: data_vars[v] = xr.DataArray( name=v, data=np.array([0, 1]).astype(bool), dims=["time"], coords=coords, ) ds1 = xr.Dataset(data_vars)

Print raw data:

print(ds1) Out[3]: <xarray.Dataset> Dimensions: (time: 2) Coordinates: * time (time) int32 0 1 Data variables: long_variable_name0 (time) bool False True long_variable_name1 (time) bool False True long_variable_name2 (time) bool False True long_variable_name3 (time) bool False True long_variable_name4 (time) bool False True

Interpolate:

ds1 = ds1.interp( time=da.array([0, 0.5, 1, 2]), assume_sorted=True, method="nearest", kwargs=dict(fill_value="extrapolate"), )

Print interpolated data:

<xarray.Dataset> Dimensions: (time: 4) Coordinates: * time (time) float64 0.0 0.5 1.0 2.0 Data variables: empty ```

Anything else we need to know?: ds.interp_likeuse ds.reindex in these cases which seems like a good choice in ds.interp as well. But I think that both ds.interp and ds.interp_like should fill by default with nearest value instead of np.nan because we're still requesting interpolation.

Environment:

Output of <tt>xr.show_versions()</tt> xr.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] python-bits: 64 OS: Windows libhdf5: 1.10.4 libnetcdf: None xarray: 0.16.2 pandas: 1.1.5 numpy: 1.17.5 scipy: 1.4.1 netCDF4: None pydap: None h5netcdf: None h5py: 2.10.0 Nio: None zarr: None cftime: None nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.2 dask: 2020.12.0 distributed: 2020.12.0 matplotlib: 3.3.2 cartopy: None seaborn: 0.11.1 numbagg: None pint: None setuptools: 51.0.0.post20201207 pip: 20.3.3 conda: 4.9.2 pytest: 6.2.1 IPython: 7.19.0 sphinx: 3.4.0
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4761/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
791725552 MDU6SXNzdWU3OTE3MjU1NTI= 4838 Simplify adding custom backends Illviljan 14371165 closed 0     0 2021-01-22T06:02:53Z 2021-04-15T02:02:03Z 2021-04-15T02:02:03Z MEMBER      

Is your feature request related to a problem? Please describe. I've been working on opening custom hdf formats in xarray, reading up on the apiv2 it is currently only possible to declare a new external plugin in setup.py but that doesn't seem easy or intuitive to me.

Describe the solution you'd like Why can't we simply be allowed to add functions to the engine parameter? Example: ```python from custom_backend import engine

ds = xr.load_dataset(filename, engine=engine) ``` This seems like a small function change to me from my initial quick look because there's mainly a bunch of string checks in the normal case until we get to the registered backend functions, if we send in a function instead in the engine-parameter we can just bypass those checks.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4838/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 45.051ms · About: xarray-datasette