home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

3 rows where "closed_at" is on date 2021-02-19 and user = 2448579 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: closed_at, created_at (date), updated_at (date), closed_at (date)

type 2

  • pull 2
  • issue 1

state 1

  • closed 3

repo 1

  • xarray 3
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
809366777 MDExOlB1bGxSZXF1ZXN0NTc0MjQxMTE3 4915 Better rolling reductions dcherian 2448579 closed 0     6 2021-02-16T14:37:49Z 2023-04-13T15:46:18Z 2021-02-19T19:44:04Z MEMBER   0 pydata/xarray/pulls/4915

Implements most of https://github.com/pydata/xarray/issues/4325#issuecomment-716399575 ``` python %load_ext memory_profiler

import numpy as np import xarray as xr

temp = xr.DataArray(np.zeros((5000, 500)), dims=("x", "y"))

roll = temp.rolling(x=10, y=20)

%memit roll.sum() %memit roll.reduce(np.sum) %memit roll.reduce(np.nansum) # master branch behaviour peak memory: 245.18 MiB, increment: 81.92 MiB peak memory: 226.09 MiB, increment: 62.69 MiB peak memory: 4493.82 MiB, increment: 4330.43 MiB `` - [x] xref #4325 - [x] asv benchmarks added - [x] Passespre-commit run --all-files- [x] User visible changes (including notable bug fixes) are documented inwhats-new.rst`

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4915/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
694182591 MDExOlB1bGxSZXF1ZXN0NDgwNTk3OTk3 4407 Dataset.plot.quiver dcherian 2448579 closed 0     3 2020-09-05T21:04:05Z 2021-02-19T14:21:47Z 2021-02-19T14:21:45Z MEMBER   0 pydata/xarray/pulls/4407
  • [x] Closes #4373
  • [x] Tests added
  • [x] Passes isort . && black . && mypy . && flake8
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [x] New functions/methods are listed in api.rst

I could use some help with adding tests and parameter checking if someone wants to help :)

``` python import numpy as np import xarray as xr

ds = xr.Dataset() ds.coords["x"] = ("x", np.arange(10)) ds.coords["y"] = ("y", np.arange(20)) ds.coords["t"] = ("t", np.arange(4)) ds["u"] = np.sin((ds.x - 5) / 5) * np.sin((ds.y - 10) / 10) ds["v"] = np.sin((ds.x - 5) / 5) * np.cos((ds.y - 10) / 10)

ds = ds * 2*np.cos((ds.t) * 2 * 3.14 /0.75)

ds["u"].attrs["units"] = "m/s" ds["mag"] = np.hypot(ds.u, ds.v)

ds.mag.plot(col="t", x="x")

fg = ds.plot.quiver(x="x", y="y", u="u", v="v", col="t", hue="mag") ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4407/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
685590739 MDU6SXNzdWU2ODU1OTA3Mzk= 4373 Add Dataset.plot.quiver dcherian 2448579 closed 0     0 2020-08-25T15:39:37Z 2021-02-19T14:21:45Z 2021-02-19T14:21:45Z MEMBER      

I think it would be nice to add a quiver plot function. I got this far in my current project:

``` python @xarray.plot.dataset_plot._dsplot def quiver(ds, x, y, ax, u, v, **kwargs): from xarray import broadcast

if x is None or y is None or u is None or v is None:
    raise ValueError("Must specify x, y, u, v for quiver plots.")

# matplotlib autoscaling algorithm
scale = kwargs.pop("scale", None)
if scale is None:
    npts = ds.dims[x] * ds.dims[y]
    # crude auto-scaling
    # scale is typical arrow length as a multiple of the arrow width
    scale = (
        1.8 * ds.to_array().median().values * np.maximum(10, np.sqrt(npts))
    )  # / span

ds = ds.squeeze()
x, y, u, v = broadcast(ds[x], ds[y], ds[u], ds[v])

# no support for these kwargs right now.
kwargs.pop("cmap_params")
kwargs.pop("hue")
kwargs.pop("hue_style")
hdl = ax.quiver(x.values, y.values, u.values, v.values, scale=scale, **kwargs)

return hdl

```

The autoscaling logic is quite crude; I tried to copy what matplotlib does but got somewhat confused. To get faceting to work properly, we'll need to estimate scale around here: https://github.com/pydata/xarray/blob/a36d0a1d4657c848dcdd76d0ecb9c783ad464057/xarray/plot/facetgrid.py#L339-L343

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4373/reactions",
    "total_count": 4,
    "+1": 4,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 42.602ms · About: xarray-datasette