issues
3 rows where "closed_at" is on date 2021-02-19, state = "closed" and user = 2448579 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: closed_at, created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 809366777 | MDExOlB1bGxSZXF1ZXN0NTc0MjQxMTE3 | 4915 | Better rolling reductions | dcherian 2448579 | closed | 0 | 6 | 2021-02-16T14:37:49Z | 2023-04-13T15:46:18Z | 2021-02-19T19:44:04Z | MEMBER | 0 | pydata/xarray/pulls/4915 | Implements most of https://github.com/pydata/xarray/issues/4325#issuecomment-716399575 ``` python %load_ext memory_profiler import numpy as np import xarray as xr temp = xr.DataArray(np.zeros((5000, 500)), dims=("x", "y")) roll = temp.rolling(x=10, y=20) %memit roll.sum()
%memit roll.reduce(np.sum)
%memit roll.reduce(np.nansum) # master branch behaviour
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/4915/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull | |||||
| 694182591 | MDExOlB1bGxSZXF1ZXN0NDgwNTk3OTk3 | 4407 | Dataset.plot.quiver | dcherian 2448579 | closed | 0 | 3 | 2020-09-05T21:04:05Z | 2021-02-19T14:21:47Z | 2021-02-19T14:21:45Z | MEMBER | 0 | pydata/xarray/pulls/4407 |
I could use some help with adding tests and parameter checking if someone wants to help :) ``` python import numpy as np import xarray as xr ds = xr.Dataset() ds.coords["x"] = ("x", np.arange(10)) ds.coords["y"] = ("y", np.arange(20)) ds.coords["t"] = ("t", np.arange(4)) ds["u"] = np.sin((ds.x - 5) / 5) * np.sin((ds.y - 10) / 10) ds["v"] = np.sin((ds.x - 5) / 5) * np.cos((ds.y - 10) / 10) ds = ds * 2*np.cos((ds.t) * 2 * 3.14 /0.75) ds["u"].attrs["units"] = "m/s" ds["mag"] = np.hypot(ds.u, ds.v) ds.mag.plot(col="t", x="x") fg = ds.plot.quiver(x="x", y="y", u="u", v="v", col="t", hue="mag") ```
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/4407/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull | |||||
| 685590739 | MDU6SXNzdWU2ODU1OTA3Mzk= | 4373 | Add Dataset.plot.quiver | dcherian 2448579 | closed | 0 | 0 | 2020-08-25T15:39:37Z | 2021-02-19T14:21:45Z | 2021-02-19T14:21:45Z | MEMBER | I think it would be nice to add a quiver plot function. I got this far in my current project: ``` python @xarray.plot.dataset_plot._dsplot def quiver(ds, x, y, ax, u, v, **kwargs): from xarray import broadcast
``` The autoscaling logic is quite crude; I tried to copy what matplotlib does but got somewhat confused. To get faceting to work properly, we'll need to estimate |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/4373/reactions",
"total_count": 4,
"+1": 4,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);
