issues
9 rows where "closed_at" is on date 2020-03-29, repo = 13221727 and type = "issue" sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, author_association, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
584429748 | MDU6SXNzdWU1ODQ0Mjk3NDg= | 3867 | macos py38 CI failing | dcherian 2448579 | closed | 0 | 3 | 2020-03-19T13:54:10Z | 2020-03-29T22:13:26Z | 2020-03-29T22:13:26Z | MEMBER |
```python E ImportError: dlopen(/usr/local/miniconda/envs/xarray-tests/lib/python3.8/site-packages/PIL/_imaging.cpython-38-darwin.so, 2): Library not loaded: @rpath/libwebp.7.dylib E Referenced from: /usr/local/miniconda/envs/xarray-tests/lib/libtiff.5.dylib E Reason: Incompatible library version: libtiff.5.dylib requires version 9.0.0 or later, but libwebp.7.dylib provides version 8.0.0 /usr/local/miniconda/envs/xarray-tests/lib/python3.8/site-packages/PIL/Image.py:69: ImportError ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3867/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
200364693 | MDU6SXNzdWUyMDAzNjQ2OTM= | 1201 | pass projection argument to plt.subplot when faceting with cartopy transform | vnoel 731499 | closed | 0 | 10 | 2017-01-12T13:18:52Z | 2020-03-29T16:30:29Z | 2020-03-29T16:30:29Z | CONTRIBUTOR | I have a I want to plot maps of this dataset, faceted by Time. The following code
fails with
this is because to plot with a transform, the axes must be a GeoAxes, which is done with something like
I propose that, when plot faceting is requested with a |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1201/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
502060636 | MDU6SXNzdWU1MDIwNjA2MzY= | 3368 | Shift DataArray along a coordinate for different values of each element of another coordinate | gabrieltagleh 49461634 | closed | 0 | 1 | 2019-10-03T13:17:10Z | 2020-03-29T14:18:11Z | 2020-03-29T14:16:43Z | NONE | MCVE Code Sample```python Your code hereOriginal_DataArray = <xarray.DataArray 'Conexões Domésticas e Piscinas' (projetos_resi: 9, res_segmentacao: 21, time: 133, bands: 10)> Shift_Map = <xarray.DataArray 'Anos por Desconto' (res_segmentacao: 21)> array([ 0, 0, 0, 24, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 36, 60, 36, 0]) "Multi" Shift Functiondef _fn(dataArray,over_shift_index,multi_shift_index,shift_map,initialValues=None):
"""
``` Expected OutputSame estructure DataArray shifted along the "time" coordinate by a different value for each element of the "res_segmentacao" coordinate.
Problem DescriptionI´ve reached my objective but I wanted to consult if anyone had donde this in a more efficient way. Thanks! |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3368/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
327392061 | MDU6SXNzdWUzMjczOTIwNjE= | 2196 | inconsistent time coordinates types | aurghs 35919497 | closed | 0 | 1 | 2018-05-29T16:14:27Z | 2020-03-29T14:09:26Z | 2020-03-29T14:09:26Z | COLLABORATOR | Code Sample, a copy-pastable example if possible```python import numpy as np import pandas as pd import xarray as xr time = np.arange('2005-02-01', '2007-03-01', dtype='datetime64') arr = xr.DataArray( np.arange(time.size), coords=[time,], dims=('time',), name='data' ) arr.resample(time='M').interpolate('linear') ValueError Traceback (most recent call last) <ipython-input-7-6a92b6afe08e> in <module>() 7 np.arange(time.size), coords=[time,], dims=('time',), name='data' 8 ) ----> 9 arr.resample(time='M').interpolate('linear') ~/devel/c3s-cns/venv_op/lib/python3.6/site-packages/xarray/core/resample.py in interpolate(self, kind) 108 109 """ --> 110 return self._interpolate(kind=kind) 111 112 def _interpolate(self, kind='linear'): ~/devel/c3s-cns/venv_op/lib/python3.6/site-packages/xarray/core/resample.py in _interpolate(self, kind) 218 elif self._dim not in v.dims: 219 coords[k] = v --> 220 return DataArray(f(new_x), coords, dims, name=dummy.name, 221 attrs=dummy.attrs) 222 ~/devel/c3s-cns/venv_op/lib/python3.6/site-packages/scipy/interpolate/polyint.py in call(self, x) 77 """ 78 x, x_shape = self._prepare_x(x) ---> 79 y = self._evaluate(x) 80 return self._finish_y(y, x_shape) 81 ~/devel/c3s-cns/venv_op/lib/python3.6/site-packages/scipy/interpolate/interpolate.py in _evaluate(self, x_new) 632 y_new = self._call(self, x_new) 633 if not self._extrapolate: --> 634 below_bounds, above_bounds = self._check_bounds(x_new) 635 if len(y_new) > 0: 636 # Note fill_value must be broadcast up to the proper size ~/devel/c3s-cns/venv_op/lib/python3.6/site-packages/scipy/interpolate/interpolate.py in _check_bounds(self, x_new) 664 "range.") 665 if self.bounds_error and above_bounds.any(): --> 666 raise ValueError("A value in x_new is above the interpolation " 667 "range.") 668 ValueError: A value in x_new is above the interpolation range. ``` Problem descriptionThe internal format of arr.time is datetime64[D] ```python arr.time <xarray.DataArray 'time' (time: 758)> array(['2005-02-01', '2005-02-02', '2005-02-03', ..., '2007-02-26', '2007-02-27', '2007-02-28'], dtype='datetime64[D]') Coordinates: * time (time) datetime64[D] 2005-02-01 2005-02-02 2005-02-03 ... ``` Internally there is a cast to float, for both the old time indices x and the new time indices new_x, but the new time indices are in datetime64[ns], so they don't match. DataArrayResample._interpolate ```python x = self._obj[self._dim].astype('float') y = self._obj.data
``` With a cast to datetime64[ns] it works: ```python import numpy as np import pandas as pd import xarray as xr time = np.arange('2005-02-01', '2007-03-01', dtype='datetime64').astype('datetime64[ns]') arr = xr.DataArray( np.arange(time.size), coords=[time,], dims=('time',), name='data' ) arr.resample(time='M').interpolate('linear') <xarray.DataArray 'data' (time: 25)> array([ 27., 58., 88., 119., 149., 180., 211., 241., 272., 302., 333., 364., 392., 423., 453., 484., 514., 545., 576., 606., 637., 667., 698., 729., 757.]) Coordinates: * time (time) datetime64[ns] 2005-02-28 2005-03-31 2005-04-30 ... ``` Expected Output
Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2196/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
445355249 | MDU6SXNzdWU0NDUzNTUyNDk= | 2970 | decode_cf | shaharkadmiel 6872529 | closed | 0 | 1 | 2019-05-17T09:41:28Z | 2020-03-29T14:02:24Z | 2020-03-29T14:02:24Z | NONE | To me this name is a bit confusing as it actually encodes an in memory object to look like a decoded netcdf file. I have a class which inherits (I know about ```python import xarray as xr class XResult(xr.Dataset): def init(self, data=None, coords=None, attrs=None, kwargs): if isinstance(data, str): kwargs = dict(READ_KWARGS, kwargs) with xr.open_dataset(data, **kwargs) as data: attrs = data.attrs
``` I expect the XResult object to be decoded but it is not. if I do It would be quite convenient to have a |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2970/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
438694589 | MDU6SXNzdWU0Mzg2OTQ1ODk= | 2932 | Facetgrid: colors beyond range (extend) not saturated | lvankampenhout 7933853 | closed | 0 | 5 | 2019-04-30T09:56:46Z | 2020-03-29T13:26:43Z | 2020-03-29T13:26:42Z | NONE | Code Sample, a copy-pastable example if possibleMinimal example here: https://github.com/lvankampenhout/bug-reports/blob/master/Facetgrid_cmap_extend.ipynb Problem descriptionThe extreme colors of neither the pcolormesh or colorbar (using extend='both') are not saturated as they should when faceting. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2932/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
561312864 | MDU6SXNzdWU1NjEzMTI4NjQ= | 3759 | Truncate long lines in repr of coords | max-sixty 5635139 | closed | 0 | 1 | 2020-02-06T22:41:13Z | 2020-03-29T09:58:46Z | 2020-03-29T09:58:45Z | MEMBER | MCVE Code Sample```python xr.DataArray(coords=dict(a=' '.join(['hello world' for _ in range(100)]))) <xarray.DataArray ()> array(nan) Coordinates: a <U5999 'hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world' ``` Expected Output
Problem DescriptionI think mostly the same as https://github.com/pydata/xarray/issues/1319 but for coords Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3759/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
588821932 | MDU6SXNzdWU1ODg4MjE5MzI= | 3899 | _indexes of DataArray are not deep copied | toddrjen 2272878 | closed | 0 | 4 | 2020-03-27T01:19:07Z | 2020-03-29T02:01:20Z | 2020-03-29T02:01:20Z | CONTRIBUTOR | In MCVE Code Sample```python a0 = xr.DataArray( np.array([[1, 2, 3], [4, 5, 6]]), dims=["y", "x"], coords={"x": ["a", "b", "c"], "y": [-1, 1]}, ) a1 = a0.copy() del a1.coords["y"] xr.tests.assert_identical(a0, a0) ``` The result is: ``` xarray/testing.py:272: in _assert_internal_invariants _assert_dataarray_invariants(xarray_obj) xarray/testing.py:222: in _assert_dataarray_invariants _assert_indexes_invariants_checks(da._indexes, da._coords, da.dims) indexes = {'x': Index(['a', 'b', 'c'], dtype='object', name='x')}, possible_coord_variables = {'x': <xarray.IndexVariable 'x' (x: 3)> array(['a', 'b', 'c'], dtype='<U1'), 'y': <xarray.IndexVariable 'y' (y: 2)> array([-1, 1])} dims = ('y', 'x')
xarray/testing.py:185: AssertionError ``` Expected OutputThe test should pass. Problem DescriptionDoing a deep copy should make a copy of everything. Changing a deep copy should not alter the original in any way. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3899/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
29136905 | MDU6SXNzdWUyOTEzNjkwNQ== | 60 | Implement DataArray.idxmax() | shoyer 1217238 | closed | 0 | 1.0 741199 | 14 | 2014-03-10T22:03:06Z | 2020-03-29T01:54:25Z | 2020-03-29T01:54:25Z | MEMBER | Should match the pandas function: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.idxmax.html |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/60/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);