home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

9 rows where "closed_at" is on date 2020-03-29, repo = 13221727 and type = "issue" sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: comments, author_association, created_at (date), updated_at (date), closed_at (date)

type 1

  • issue · 9 ✖

state 1

  • closed 9

repo 1

  • xarray · 9 ✖
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
584429748 MDU6SXNzdWU1ODQ0Mjk3NDg= 3867 macos py38 CI failing dcherian 2448579 closed 0     3 2020-03-19T13:54:10Z 2020-03-29T22:13:26Z 2020-03-29T22:13:26Z MEMBER      

import matplotlib is failing when it imports PIL

```python

E ImportError: dlopen(/usr/local/miniconda/envs/xarray-tests/lib/python3.8/site-packages/PIL/_imaging.cpython-38-darwin.so, 2): Library not loaded: @rpath/libwebp.7.dylib E Referenced from: /usr/local/miniconda/envs/xarray-tests/lib/libtiff.5.dylib E Reason: Incompatible library version: libtiff.5.dylib requires version 9.0.0 or later, but libwebp.7.dylib provides version 8.0.0

/usr/local/miniconda/envs/xarray-tests/lib/python3.8/site-packages/PIL/Image.py:69: ImportError ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3867/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
200364693 MDU6SXNzdWUyMDAzNjQ2OTM= 1201 pass projection argument to plt.subplot when faceting with cartopy transform vnoel 731499 closed 0     10 2017-01-12T13:18:52Z 2020-03-29T16:30:29Z 2020-03-29T16:30:29Z CONTRIBUTOR      

I have a data 3D DataArray with Time, Latitude and Longitude coordinates.

I want to plot maps of this dataset, faceted by Time. The following code

import cartopy.crs as ccrs proj = ccrs.PlateCarree() data.plot(transform=proj, col='Time', col_wrap=3, robust=True)

fails with

ValueError: Axes should be an instance of GeoAxes, got <class 'matplotlib.axes._subplots.AxesSubplot'>

this is because to plot with a transform, the axes must be a GeoAxes, which is done with something like plt.subplot(111, projection=proj). The implicit subplotting done when faceting does not do that. To make the faceting works, I had to do

import cartopy.crs as ccrs proj = ccrs.PlateCarree() data.plot(transform=proj, col='Time', col_wrap=3, robust=True, subplot_kws={'projection':proj})

I propose that, when plot faceting is requested with a transform kw, the content of that keyword should be passed to the subplot function as a projection argument automatically by default. If a projection is provided explicitely like in the call above, use that one.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1201/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
502060636 MDU6SXNzdWU1MDIwNjA2MzY= 3368 Shift DataArray along a coordinate for different values of each element of another coordinate gabrieltagleh 49461634 closed 0     1 2019-10-03T13:17:10Z 2020-03-29T14:18:11Z 2020-03-29T14:16:43Z NONE      

MCVE Code Sample

```python

Your code here

Original_DataArray = <xarray.DataArray 'Conexões Domésticas e Piscinas' (projetos_resi: 9, res_segmentacao: 21, time: 133, bands: 10)>

Shift_Map = <xarray.DataArray 'Anos por Desconto' (res_segmentacao: 21)> array([ 0, 0, 0, 24, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 36, 60, 36, 0])

"Multi" Shift Function

def _fn(dataArray,over_shift_index,multi_shift_index,shift_map,initialValues=None): """
-dataArray: dataarray to shift -over_shift_index: index over apply shit of dataarray -multi_shift_index: index with the elements to apply a different value shift -shift_map: datarray indexed by multi_shift_index with the values to shift for each element """

_da = dataArray.copy()
_shift_map = shift_map.astype(int)

for name, sl in _da.groupby(multi_shift_index.name):
    _shift = subscript(_shift_map, multi_shift_index, name ).values.tolist()
    _sl = sl.squeeze(multi_shift_index.name).shift(time = _shift)

    _dict = {multi_shift_index.name : name}
    _da.loc[_dict] = _sl


return _da.fillna(0.)

```

Expected Output

Same estructure DataArray shifted along the "time" coordinate by a different value for each element of the "res_segmentacao" coordinate.

python exp_output= multidynamic( Original_DataArray , time, res_segmentacao, Shift_Map )

Problem Description

I´ve reached my objective but I wanted to consult if anyone had donde this in a more efficient way. Thanks!

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3368/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
327392061 MDU6SXNzdWUzMjczOTIwNjE= 2196 inconsistent time coordinates types aurghs 35919497 closed 0     1 2018-05-29T16:14:27Z 2020-03-29T14:09:26Z 2020-03-29T14:09:26Z COLLABORATOR      

Code Sample, a copy-pastable example if possible

```python import numpy as np import pandas as pd import xarray as xr

time = np.arange('2005-02-01', '2007-03-01', dtype='datetime64') arr = xr.DataArray( np.arange(time.size), coords=[time,], dims=('time',), name='data' ) arr.resample(time='M').interpolate('linear')


ValueError Traceback (most recent call last) <ipython-input-7-6a92b6afe08e> in <module>() 7 np.arange(time.size), coords=[time,], dims=('time',), name='data' 8 ) ----> 9 arr.resample(time='M').interpolate('linear')

~/devel/c3s-cns/venv_op/lib/python3.6/site-packages/xarray/core/resample.py in interpolate(self, kind) 108 109 """ --> 110 return self._interpolate(kind=kind) 111 112 def _interpolate(self, kind='linear'):

~/devel/c3s-cns/venv_op/lib/python3.6/site-packages/xarray/core/resample.py in _interpolate(self, kind) 218 elif self._dim not in v.dims: 219 coords[k] = v --> 220 return DataArray(f(new_x), coords, dims, name=dummy.name, 221 attrs=dummy.attrs) 222

~/devel/c3s-cns/venv_op/lib/python3.6/site-packages/scipy/interpolate/polyint.py in call(self, x) 77 """ 78 x, x_shape = self._prepare_x(x) ---> 79 y = self._evaluate(x) 80 return self._finish_y(y, x_shape) 81

~/devel/c3s-cns/venv_op/lib/python3.6/site-packages/scipy/interpolate/interpolate.py in _evaluate(self, x_new) 632 y_new = self._call(self, x_new) 633 if not self._extrapolate: --> 634 below_bounds, above_bounds = self._check_bounds(x_new) 635 if len(y_new) > 0: 636 # Note fill_value must be broadcast up to the proper size

~/devel/c3s-cns/venv_op/lib/python3.6/site-packages/scipy/interpolate/interpolate.py in _check_bounds(self, x_new) 664 "range.") 665 if self.bounds_error and above_bounds.any(): --> 666 raise ValueError("A value in x_new is above the interpolation " 667 "range.") 668

ValueError: A value in x_new is above the interpolation range. ```

Problem description

The internal format of arr.time is datetime64[D]

```python arr.time

<xarray.DataArray 'time' (time: 758)> array(['2005-02-01', '2005-02-02', '2005-02-03', ..., '2007-02-26', '2007-02-27', '2007-02-28'], dtype='datetime64[D]') Coordinates: * time (time) datetime64[D] 2005-02-01 2005-02-02 2005-02-03 ... ``` Internally there is a cast to float, for both the old time indices x and the new time indices new_x, but the new time indices are in datetime64[ns], so they don't match.

DataArrayResample._interpolate

```python x = self._obj[self._dim].astype('float') y = self._obj.data

   axis = self._obj.get_axis_num(self._dim)

   f = interp1d(x, y, kind=kind, axis=axis, bounds_error=True,
                assume_sorted=True)
   new_x = self._full_index.values.astype('float')

``` With a cast to datetime64[ns] it works:

```python import numpy as np import pandas as pd import xarray as xr

time = np.arange('2005-02-01', '2007-03-01', dtype='datetime64').astype('datetime64[ns]') arr = xr.DataArray( np.arange(time.size), coords=[time,], dims=('time',), name='data' ) arr.resample(time='M').interpolate('linear') <xarray.DataArray 'data' (time: 25)> array([ 27., 58., 88., 119., 149., 180., 211., 241., 272., 302., 333., 364., 392., 423., 453., 484., 514., 545., 576., 606., 637., 667., 698., 729., 757.]) Coordinates: * time (time) datetime64[ns] 2005-02-28 2005-03-31 2005-04-30 ... ```

Expected Output

python <xarray.DataArray 'data' (time: 25)> array([ 27., 58., 88., 119., 149., 180., 211., 241., 272., 302., 333., 364., 392., 423., 453., 484., 514., 545., 576., 606., 637., 667., 698., 729., 757.]) Coordinates: * time (time) datetime64[ns] 2005-02-28 2005-03-31 2005-04-30 ...

Output of xr.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.0.final.0 python-bits: 64 OS: Linux OS-release: 4.13.0-43-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 xarray: 0.10.4 pandas: 0.20.3 numpy: 1.13.1 scipy: 1.0.0 netCDF4: 1.3.1 h5netcdf: None h5py: None Nio: None zarr: None bottleneck: None cyordereddict: None dask: 0.16.1 distributed: None matplotlib: 2.0.2 cartopy: None seaborn: None setuptools: 38.4.0 pip: 10.0.1 conda: None pytest: 3.4.0 IPython: 6.1.0 sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/2196/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
445355249 MDU6SXNzdWU0NDUzNTUyNDk= 2970 decode_cf shaharkadmiel 6872529 closed 0     1 2019-05-17T09:41:28Z 2020-03-29T14:02:24Z 2020-03-29T14:02:24Z NONE      

To me this name is a bit confusing as it actually encodes an in memory object to look like a decoded netcdf file.

I have a class which inherits (I know about dataset_accessor, still seems easier to simply inherit...) xarray.Dataset to which I've added a method _make_cf:

```python import xarray as xr class XResult(xr.Dataset): def init(self, data=None, coords=None, attrs=None, kwargs): if isinstance(data, str): kwargs = dict(READ_KWARGS, kwargs) with xr.open_dataset(data, **kwargs) as data: attrs = data.attrs

    super().__init__(data, coords, attrs)
    self._make_cf()

def _make_cf(self):
    self = xr.decode_cf(self)

``` I expect the XResult object to be decoded but it is not.

if I do xresult = xarray.decode_cf(XResult(...)) than the object is indeed decoded but is no longer an XResult object and loses the attached functionality.

It would be quite convenient to have a decode_cf or encode_cf method part of the Dataset class that will operate inplace.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/2970/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
438694589 MDU6SXNzdWU0Mzg2OTQ1ODk= 2932 Facetgrid: colors beyond range (extend) not saturated lvankampenhout 7933853 closed 0     5 2019-04-30T09:56:46Z 2020-03-29T13:26:43Z 2020-03-29T13:26:42Z NONE      

Code Sample, a copy-pastable example if possible

Minimal example here: https://github.com/lvankampenhout/bug-reports/blob/master/Facetgrid_cmap_extend.ipynb

Problem description

The extreme colors of neither the pcolormesh or colorbar (using extend='both') are not saturated as they should when faceting.

Output of xr.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.8 |Anaconda custom (x86_64)| (default, Dec 29 2018, 19:04:46) [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] python-bits: 64 OS: Darwin OS-release: 17.7.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: C LANG: None LOCALE: None.None libhdf5: 1.10.1 libnetcdf: 4.4.1.1 xarray: 0.12.1 pandas: 0.23.4 numpy: 1.14.2 scipy: 0.18.1 netCDF4: 1.3.1 pydap: None h5netcdf: None h5py: 2.7.1 Nio: None zarr: None cftime: 1.0.0b1 nc_time_axis: None PseudonetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.0 dask: 0.13.0 distributed: None matplotlib: 3.0.2 cartopy: 0.16.0 seaborn: 0.7.1 setuptools: 38.5.1 pip: 9.0.1 conda: 4.6.14 pytest: 3.0.5 IPython: 5.1.0 sphinx: 1.5.1
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/2932/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
561312864 MDU6SXNzdWU1NjEzMTI4NjQ= 3759 Truncate long lines in repr of coords max-sixty 5635139 closed 0     1 2020-02-06T22:41:13Z 2020-03-29T09:58:46Z 2020-03-29T09:58:45Z MEMBER      

MCVE Code Sample

```python xr.DataArray(coords=dict(a=' '.join(['hello world' for _ in range(100)])))

<xarray.DataArray ()> array(nan) Coordinates: a <U5999 'hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world hello world' ```

Expected Output

<xarray.DataArray ()> array(nan) Coordinates: a <U5999 'hello world ... hello world'

Problem Description

I think mostly the same as https://github.com/pydata/xarray/issues/1319 but for coords

Output of xr.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.7.3 | packaged by conda-forge | (default, Jul 1 2019, 21:52:21) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: [...] machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.utf8 LOCALE: en_US.UTF-8 libhdf5: 1.10.5 libnetcdf: 4.7.1 xarray: 0.15.0 pandas: 0.25.3 numpy: 1.17.3 scipy: 1.3.2 netCDF4: 1.5.3 pydap: None h5netcdf: 0.7.4 h5py: 2.10.0 Nio: None zarr: None cftime: 1.0.4.2 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.2.1 dask: 2.7.0 distributed: 2.7.0 matplotlib: 3.1.2 cartopy: None seaborn: 0.9.0 numbagg: None setuptools: 41.6.0.post20191101 pip: 19.3.1 conda: None pytest: 5.2.2 IPython: 7.9.0 sphinx: 2.2.1
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3759/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
588821932 MDU6SXNzdWU1ODg4MjE5MzI= 3899 _indexes of DataArray are not deep copied toddrjen 2272878 closed 0     4 2020-03-27T01:19:07Z 2020-03-29T02:01:20Z 2020-03-29T02:01:20Z CONTRIBUTOR      

In DataArray.copy, the _indexes attributes is not deep copied. After pull request #3840, this causes deleting a coordinate of a copy will also delete that coordinate from the original, even for deep copies.

MCVE Code Sample

```python a0 = xr.DataArray( np.array([[1, 2, 3], [4, 5, 6]]), dims=["y", "x"], coords={"x": ["a", "b", "c"], "y": [-1, 1]}, )

a1 = a0.copy() del a1.coords["y"]

xr.tests.assert_identical(a0, a0) ```

The result is:

``` xarray/testing.py:272: in _assert_internal_invariants _assert_dataarray_invariants(xarray_obj) xarray/testing.py:222: in _assert_dataarray_invariants _assert_indexes_invariants_checks(da._indexes, da._coords, da.dims)


indexes = {'x': Index(['a', 'b', 'c'], dtype='object', name='x')}, possible_coord_variables = {'x': <xarray.IndexVariable 'x' (x: 3)> array(['a', 'b', 'c'], dtype='<U1'), 'y': <xarray.IndexVariable 'y' (y: 2)> array([-1, 1])} dims = ('y', 'x')

def _assert_indexes_invariants_checks(indexes, possible_coord_variables, dims):
    assert isinstance(indexes, dict), indexes
    assert all(isinstance(v, pd.Index) for v in indexes.values()), {
        k: type(v) for k, v in indexes.items()
    }

    index_vars = {
        k for k, v in possible_coord_variables.items() if isinstance(v, IndexVariable)
    }
    assert indexes.keys() <= index_vars, (set(indexes), index_vars)

    # Note: when we support non-default indexes, these checks should be opt-in
    # only!
    defaults = default_indexes(possible_coord_variables, dims)
  assert indexes.keys() == defaults.keys(), (set(indexes), set(defaults))

E AssertionError: ({'x'}, {'y', 'x'})

xarray/testing.py:185: AssertionError ```

Expected Output

The test should pass.

Problem Description

Doing a deep copy should make a copy of everything. Changing a deep copy should not alter the original in any way.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3899/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
29136905 MDU6SXNzdWUyOTEzNjkwNQ== 60 Implement DataArray.idxmax() shoyer 1217238 closed 0   1.0 741199 14 2014-03-10T22:03:06Z 2020-03-29T01:54:25Z 2020-03-29T01:54:25Z MEMBER      

Should match the pandas function: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.idxmax.html

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/60/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 603.874ms · About: xarray-datasette