issues
4 rows where "closed_at" is on date 2018-05-08 and repo = 13221727 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: user, closed_at, author_association, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
297631403 | MDExOlB1bGxSZXF1ZXN0MTY5NTEyMjU1 | 1915 | h5netcdf new API support | crusaderky 6213168 | closed | 0 | 13 | 2018-02-15T23:15:55Z | 2018-05-11T23:49:00Z | 2018-05-08T02:25:40Z | MEMBER | 0 | pydata/xarray/pulls/1915 | Closes #1536 Support arbitrary compression plugins through the h5netcdf new API. Done: - public API and docstrings (untested) - implementation - unit tests - What's New |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1915/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
320007162 | MDU6SXNzdWUzMjAwMDcxNjI= | 2102 | resample DeprecationWarning only on 1-D arrays? | raybellwaves 17162724 | closed | 0 | 1 | 2018-05-03T17:13:55Z | 2018-05-08T17:36:22Z | 2018-05-08T17:36:22Z | CONTRIBUTOR | Code Sample, a copy-pastable example if possible```python da = xr.DataArray(np.array([1,2,3,4], dtype=np.float).reshape(2,2), ... coords=[pd.date_range('1/1/2000', '1/2/2000', freq='D'), ... np.linspace(0,1,num=2)], ... dims=['time', 'latitude']) da.resample(freq='M', dim='time', how='mean') /Users/Ray/anaconda/envs/rot-eof-dev-env/bin/ipython:1: DeprecationWarning:.resample() has been modified to defer calculations. Instead of passing 'dim' and 'how="mean", #instead consider using .resample(time="M").mean()#!/Users/Ray/anaconda/envs/rot-eof-dev-env/bin/pythonOut[66]:<xarray.DataArray (time: 1, latitude: 2)>array([[2., 3.]])Coordinates:* time (time) datetime64[ns] 2000-01-31* latitude (latitude) float64 0.0 1.0da.resample(time="M").mean() <xarray.DataArray (time: 1)>array([2.5])Coordinates:* time (time) datetime64[ns] 2000-01-31``` Problem descriptionThe DeprecationWarning example seems to only work for 1d arrays as it doesn't average along any dimension. A quick fix could be to show the warning only if the DataArray/Dataset is 1D. A more thorough fix could be to wrap Expected OutputSame as Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2102/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
319985789 | MDExOlB1bGxSZXF1ZXN0MTg1NzY2MTg3 | 2101 | DOC: Add resample e.g. Edit rolling e.g. Add groupby e.g. | raybellwaves 17162724 | closed | 0 | 4 | 2018-05-03T16:08:48Z | 2018-05-08T15:46:17Z | 2018-05-08T04:23:03Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/2101 |
Added a Made a minor edit to my Added a I learnt Whilst there are great examples of these functions in the docs, a google search of a function for example |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2101/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
253476466 | MDU6SXNzdWUyNTM0NzY0NjY= | 1536 | Better compression algorithms for NetCDF | crusaderky 6213168 | closed | 0 | 28 | 2017-08-28T22:35:31Z | 2018-05-08T02:25:40Z | 2018-05-08T02:25:40Z | MEMBER | As of today, I already tested that, once you manage to write to disk with LZF (using h5netcdf directly), Options:
- write a new engine for |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1536/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);