issues: 979916914
This data as json
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
979916914 | MDU6SXNzdWU5Nzk5MTY5MTQ= | 5739 | Writing and reopening introduces bad values | 54010293 | closed | 0 | 2 | 2021-08-26T07:16:00Z | 2024-03-25T14:54:20Z | 2024-03-25T14:54:20Z | NONE | What happened: When I open two particular netcdf files in xarray, concat them and write the resulting Dataset to disk and reopen, bad/unexpected values are introduced. This happens very rarely (at least that I have noticed) and I have not spotted a pattern that would indicate when to expect this behaviour. What you expected to happen: The values should not change through the writing and reading process. Minimal Complete Verifiable Example: Download ```python feb = xr.open_dataset('./2t_era5_moda_sfc_20190201-20190228.nc') feb = feb.sel(latitude=slice(21,19), longitude=slice(79,80)) may = xr.open_dataset('./2t_era5_moda_sfc_20190501-20190531.nc') may = may.sel(latitude=slice(21,19), longitude=slice(79,80)) ds = xr.concat([feb, may], dim='time') The bad values are introduced for may. This is what the file should look like:ds.t2m.sel(time='2019-05-01').plot() Write to file, reopen and plot againds.to_netcdf('./test.nc', mode='w') ds.close() ds2 = xr.open_dataset('./test.nc') ds2.t2m.sel(time='2019-05-01').plot() ds2.close() We can also compare values using numpy.isclose:np.isclose(may.t2m.values, ds2.t2m.sel(time='2019-05').values) array([[[False, False, False, False, False], [False, False, False, False, False], [False, False, False, False, True], [False, False, False, False, False], [False, False, False, False, False], [False, False, False, False, False], [False, False, False, False, False], [ True, True, False, False, False], [False, True, True, True, False]]]) ``` Anything else we need to know?: Bad data is generated only in one time slice of This appears to be related to the encoding - if I specify the datatype when writing to file, the problem is fixed. However, as pointed out in https://github.com/pydata/xarray/issues/4826, this can introduce other problems. The netcdf files are climate data with add_offset and scale_factor attributes. Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.9.4 | packaged by conda-forge | (default, May 10 2021, 22:13:33) [GCC 9.3.0] python-bits: 64 OS: Linux OS-release: 4.18.0-305.7.1.el8.nci.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: None LOCALE: ('en_US', 'UTF-8') libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.19.0 pandas: 1.2.4 numpy: 1.20.3 scipy: 1.6.3 netCDF4: 1.5.6 pydap: None h5netcdf: None h5py: None Nio: None zarr: 2.8.3 cftime: 1.5.0 nc_time_axis: 1.2.0 PseudoNetCDF: None rasterio: 1.2.4 cfgrib: None iris: None bottleneck: 1.3.2 dask: 2021.05.1 distributed: 2021.05.1 matplotlib: 3.4.2 cartopy: 0.19.0.post1 seaborn: None numbagg: None pint: None setuptools: 49.6.0.post20210108 pip: 21.1.2 conda: 4.10.1 pytest: None IPython: 7.24.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5739/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | 13221727 | issue |