home / github / issues

Menu
  • GraphQL API
  • Search all tables

issues: 756425955

This data as json

id node_id number title user state locked assignee milestone comments created_at updated_at closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
756425955 MDU6SXNzdWU3NTY0MjU5NTU= 4648 Comprehensive benchmarking suite 2448579 open 0     6 2020-12-03T18:01:57Z 2023-06-15T16:56:00Z   MEMBER      

I think a good "infrastructure" target for the NASA OSS call would be to expand our benchmarking suite (https://pandas.pydata.org/speed/xarray/#/)

AFAIK running these in a useful manner on CI is still unsolved (please correct me if I'm wrong). But we can always run it on an NCAR machine using a cron job.

Thoughts?

cc @scottyhq

A quick survey of work needed (please append): - [ ] indexing & slicing #3382 #2799 #2227 - [ ] DataArray construction #4744 - [ ] attribute access #4741, #4742 - [ ] property access #3514 - [ ] reindexing? https://github.com/pydata/xarray/issues/1385#issuecomment-297539517 - [x] alignment #3755, #7738 - [ ] assignment #1771 - [ ] coarsen - [x] groupby #659 #7795 #7796 - [x] resample #4498 #7795 - [ ] weighted #4482 #3883 - [ ] concat #7824 - [ ] merge - [ ] open_dataset, open_mfdataset #1823 - [ ] stack / unstack - [ ] apply_ufunc? - [x] interp #4740 #7843 - [ ] reprs #4744 - [x] to_(dask)_dataframe #7844 #7474

Related: #3514

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/4648/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    13221727 issue

Links from other tables

  • 1 row from issues_id in issues_labels
  • 6 rows from issue in issue_comments
Powered by Datasette · Queries took 155.217ms · About: xarray-datasette